Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBRAIN TUMOR IMAGING

Development and Evaluation of Automated Artificial Intelligence–Based Brain Tumor Response Assessment in Patients with Glioblastoma

Jikai Zhang, Dominic LaBella, Dylan Zhang, Jessica L. Houk, Jeffrey D. Rudie, Haotian Zou, Pranav Warman, Maciej A. Mazurowski and Evan Calabrese
American Journal of Neuroradiology April 2025, DOI: https://doi.org/10.3174/ajnr.A8580
Jikai Zhang
aFrom the Department of Electrical and Computer Engineering (J.Z., M.A.M.), Duke University, Durham, North Carolina
cDuke Center for Artificial Intelligence in Radiology (J.Z., E.C.), Duke University Medical Center, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jikai Zhang
Dominic LaBella
dDepartment of Radiation Oncology (D.L.), Duke University Medical Center, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dylan Zhang
fDepartment of Radiology (D.Z., J.L.H., M.A.M., E.C.), Duke University Medical Center, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dylan Zhang
Jessica L. Houk
fDepartment of Radiology (D.Z., J.L.H., M.A.M., E.C.), Duke University Medical Center, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jessica L. Houk
Jeffrey D. Rudie
gDepartment of Radiology (J.D.R.), University of California San Diego, San Diego, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeffrey D. Rudie
Haotian Zou
eDepartment of Biostatistics and Bioinformatics (H.Z., M.A.M.), Duke University School of Medicine, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pranav Warman
hDuke University School of Medicine(P.W.), Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maciej A. Mazurowski
aFrom the Department of Electrical and Computer Engineering (J.Z., M.A.M.), Duke University, Durham, North Carolina
bDepartment of Computer Science (M.A.M.), Duke University, Durham, North Carolina
eDepartment of Biostatistics and Bioinformatics (H.Z., M.A.M.), Duke University School of Medicine, Durham, North Carolina
fDepartment of Radiology (D.Z., J.L.H., M.A.M., E.C.), Duke University Medical Center, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Evan Calabrese
cDuke Center for Artificial Intelligence in Radiology (J.Z., E.C.), Duke University Medical Center, Durham, North Carolina
fDepartment of Radiology (D.Z., J.L.H., M.A.M., E.C.), Duke University Medical Center, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Evan Calabrese
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. De Vleeschouwer S
    1. Tamimi AF,
    2. Juweid M
    . Epidemiology and outcome of glioblastoma. In: De Vleeschouwer S, ed. Glioblastoma. Exon Publications; 2017 doi:10.15586/codon.glioblastoma.2017.ch8
    CrossRefPubMed
  2. 2.↵
    1. Louis DN,
    2. Perry A,
    3. Wesseling P, et al
    . The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23:1231–51 doi:10.1093/neuonc/noab106 pmid:34185076
    CrossRefPubMed
  3. 3.↵
    1. Delgado-López PD,
    2. Corrales-García EM
    . Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 2016;18:1062–71 doi:10.1007/s12094-016-1497-x pmid:26960561
    CrossRefPubMed
  4. 4.↵
    1. Marenco-Hillembrand L,
    2. Wijesekera O,
    3. Suarez-Meade P, et al
    . Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol 2020;147:297–307 doi:10.1007/s11060-020-03451-6 pmid:32157552
    CrossRefPubMed
  5. 5.↵
    1. Reardon DA,
    2. Ballman KV,
    3. Buckner JC, et al
    . Impact of imaging measurements on response assessment in glioblastoma clinical trials. Neuro Oncol 2014;16 Suppl 7:vii24–35 doi:10.1093/neuonc/nou286 pmid:25313236
    CrossRefPubMed
  6. 6.↵
    1. Wen PY,
    2. Macdonald DR,
    3. Reardon DA, et al
    . Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J Clin Oncol 2010;28:1963–72 doi:10.1200/JCO.2009.26.3541 pmid:20231676
    Abstract/FREE Full Text
  7. 7.↵
    1. Chukwueke UN,
    2. Wen PY
    . Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol 2019;8:CNS28 doi:10.2217/cns-2018-0007 pmid:30806082
    CrossRefPubMed
  8. 8.↵
    1. Ramakrishnan D,
    2. von Reppert M,
    3. Krycia M, et al
    . Evolution and implementation of radiographic response criteria in neuro-oncology. Neurooncol Adv 2023;5:vdad118 doi:10.1093/noajnl/vdad118 pmid:37860269
    CrossRefPubMed
  9. 9.↵
    1. Macdonald DR,
    2. Cascino TL,
    3. Schold SC, et al
    . Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990;8:1277–80 doi:10.1200/JCO.1990.8.7.1277 pmid:2358840
    Abstract
  10. 10.↵
    1. Eisenhauer EA,
    2. Therasse P,
    3. Bogaerts J, et al
    . New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47 doi:10.1016/j.ejca.2008.10.026 pmid:19097774
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Ellingson BM,
    2. Wen PY,
    3. Cloughesy TF
    . Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics 2017;14:307–20 doi:10.1007/s13311-016-0507-6 pmid:28108885
    CrossRefPubMed
  12. 12.↵
    1. Weinberg BD,
    2. Gore A,
    3. Shu H-KG, et al
    . Management-based structured reporting of posttreatment glioma response with the Brain Tumor Reporting and Data System. J Am Coll Radiology 2018;15:767–71 doi:10.1016/j.jacr.2018.01.022 pmid:29503151
    CrossRefPubMed
  13. 13.↵
    1. Gore A,
    2. Hoch MJ,
    3. Shu H-KG, et al
    . Institutional implementation of a structured reporting system: our experience with the brain tumor reporting and data system. Acad Radiology 2019;26:974–80 doi:10.1016/j.acra.2018.12.023 pmid:30661977
    CrossRefPubMed
  14. 14.↵
    1. Zhang JY,
    2. Weinberg BD,
    3. Hu R, et al
    . Quantitative improvement in brain tumor MRI through structured reporting (BT-RADS). Acad Radiology 2020;27:780–84 doi:10.1016/j.acra.2019.07.028 pmid:31471207
    CrossRefPubMed
  15. 15.↵
    1. Chappell R,
    2. Miranpuri SS,
    3. Mehta MP
    . Dimension in defining tumor response. J Clin Oncol 1998;16:1234 doi:10.1200/JCO.1998.16.3.1234 pmid:9508213
    CrossRefPubMed
  16. 16.↵
    1. Menze BH,
    2. Jakab A,
    3. Bauer S, et al
    . The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993–2024 doi:10.1109/TMI.2014.2377694 pmid:25494501
    CrossRefPubMed
  17. 17.↵
    1. Pati S,
    2. Baid U,
    3. Edwards B, et al
    . Federated learning enables big data for rare cancer boundary detection. Nat Commun 2022;13:7346 doi:10.1038/s41467-022-33407-5 pmid:36470898
    CrossRefPubMed
  18. 18.↵
    1. Rudie JD,
    2. Calabrese E,
    3. Saluja R, et al
    . Longitudinal assessment of posttreatment diffuse glioma tissue volumes with three-dimensional convolutional neural networks. Radiology Artif Intell 2022;4:e210243 doi:10.1148/ryai.210243 pmid:36204543
    CrossRefPubMed
  19. 19.↵
    1. Chang K,
    2. Beers AL,
    3. Bai HX, et al
    . Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro Oncol 2019;21:1412–22 doi:10.1093/neuonc/noz106 pmid:31190077
    CrossRefPubMed
  20. 20.↵
    1. Suter Y,
    2. Notter M,
    3. Meier R, et al
    . Evaluating automated longitudinal tumor measurements for glioblastoma response assessment. Front Radiology 2023;3:1211859 doi:10.3389/fradi.2023.1211859 pmid:37745204
    CrossRefPubMed
  21. 21.↵
    1. Kickingereder P,
    2. Isensee F,
    3. Tursunova I, et al
    . Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 2019;20:728–40 doi:10.1016/S1470-2045(19)30098-1 pmid:30952559
    CrossRefPubMed
  22. 22.↵
    1. Ellingson BM,
    2. Bendszus M,
    3. Boxerman J
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 2015;17:1188–98 doi:10.1093/neuonc/nov095 pmid:26250565
    CrossRefPubMed
  23. 23.↵
    1. Mazziotta JC,
    2. Toga AW,
    3. Evans A, et al
    . A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage 1995;2:89–101 doi:10.1006/nimg.1995.1012 pmid:9343592
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Pati S,
    2. Baid U,
    3. Edwards B, et al
    . The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research. Phys Med Biol 2022;67:204002 doi:10.1088/1361-6560/ac9449
    CrossRef
  25. 25.↵
    1. Gahrmann R,
    2. van den Bent M,
    3. van der Holt B, et al
    . Comparison of 2D (RANO) and volumetric methods for assessment of recurrent glioblastoma treated with bevacizumab—a report from the BELOB trial. Neuro Oncol 2017;19:853–61 doi:10.1093/neuonc/now311 pmid:28204639
    CrossRefPubMed
  26. 26.↵
    1. Wang M-Y,
    2. Cheng J-L,
    3. Han Y-H, et al
    . Measurement of tumor size in adult glioblastoma: classical cross-sectional criteria on 2D MRI or volumetric criteria on high resolution 3D MRI? Eur J Radiology 2012;81:2370–74 doi:10.1016/j.ejrad.2011.05.017 pmid:21652157
    CrossRefPubMed
  27. 27.↵
    1. Wen PY,
    2. van den Bent M,
    3. Youssef G, et al
    . RANO 2.0: update to the Response Assessment in Neuro-Oncology criteria for high- and low-grade gliomas in adults. J Clin Oncol 2023;41:5187–99 doi:10.1200/JCO.23.01059 pmid:37774317
    CrossRefPubMed
  28. 28.↵
    1. Vollmuth P,
    2. Foltyn M,
    3. Huang RY, et al
    . Artificial intelligence (AI)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: an international multi-reader study. Neuro Oncol 2023;25:533–43 doi:10.1093/neuonc/noac189 pmid:35917833
    CrossRefPubMed
  29. 29.↵
    1. Vos MJ,
    2. Uitdehaag BMJ,
    3. Barkhof F, et al
    . Interobserver variability in the radiological assessment of response to chemotherapy in glioma. Neurology 2003;60:826–30 doi:10.1212/01.wnl.0000049467.54667.92 pmid:12629241
    CrossRefPubMed
  30. 30.↵
    1. Galanis E,
    2. Buckner JC,
    3. Maurer MJ, et al
    . Validation of neuroradiologic response assessment in gliomas: measurement by RECIST, two-dimensional, computer-assisted tumor area, and computer-assisted tumor volume methods. Neuro Oncol 2006;8:156–65 doi:10.1215/15228517-2005-005 pmid:16533757
    CrossRefPubMed
  31. 31.↵
    1. Dempsey MF,
    2. Condon BR,
    3. Hadley DM
    . Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D? AJNR Am J Neuroradiol 2005;26:770–76 pmid:15814919
    PubMedWeb of Science
  32. 32.↵
    1. Yang D
    . Standardized MRI assessment of high-grade glioma response: a review of the essential elements and pitfalls of the RANO criteria. Neurooncol Pract 2016;3:59–67 doi:10.1093/nop/npv023 pmid:31579522
    CrossRefPubMed
  33. 33.↵
    1. Ellingson BM
    . On the promise of artificial intelligence for standardizing radiographic response assessment in gliomas. Neuro Oncol 2019;21:1346–47 doi:10.1093/neuonc/noz162 pmid:31504809
    CrossRefPubMed
  34. 34.↵
    1. Sotoudeh H,
    2. Shafaat O,
    3. Bernstock JD, et al
    . Artificial intelligence in the management of glioma: era of personalized medicine. Front Oncol 2019;9:768 doi:10.3389/fonc.2019.00768 pmid:31475111
    CrossRefPubMed
  35. 35.↵
    1. Rudie JD,
    2. Rauschecker AM,
    3. Bryan RN, et al
    . Emerging applications of artificial intelligence in neuro-oncology. Radiology 2019;290:607–18 doi:10.1148/radiol.2018181928 pmid:30667332
    CrossRefPubMed
  36. 36.↵
    1. Isensee F,
    2. Jaeger PF,
    3. Kohl SA, et al
    . nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203–11 pmid:33288961
    CrossRefPubMed
  37. 37.↵
    1. Thust SC,
    2. van den Bent MJ,
    3. Smits M
    . Pseudoprogression of brain tumors. J Magn Reson Imaging 2018;48:571–89
    CrossRefPubMed
  38. 38.↵
    1. Linhares P,
    2. Carvalho B,
    3. Figueiredo R, et al
    . Early pseudoprogression following chemoradiotherapy in glioblastoma patients: the value of RANO evaluation. J Oncol 2013;2013:690585 doi:10.1155/2013/690585 pmid:24000284
    CrossRefPubMed
  39. 39.↵
    1. Kim S,
    2. Hoch MJ,
    3. Peng L, et al
    . A brain tumor reporting and data system to optimize imaging surveillance and prognostication in high-grade gliomas. J Neuroimaging 2022;32:1185–92 doi:10.1111/jon.13044 pmid:36045502
    CrossRefPubMed
  40. 40.↵
    1. Bianconi A,
    2. Rossi LF,
    3. Bonada M, et al
    . Deep learning-based algorithm for postoperative glioblastoma MRI segmentation: a promising new tool for tumor burden assessment. Brain Inform 2023;10:26 doi:10.1186/s40708-023-00207-6 pmid:37801128
    CrossRefPubMed
  41. 41.↵
    1. Crimi A,
    2. Bakas S
    1. Bangalore Yogananda CG,
    2. Wagner B,
    3. Nalawade SS, et al
    . Fully automated brain tumor segmentation and survival prediction of gliomas using deep learning and MRI. In: Crimi A, Bakas S, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science. Springer; 2020;11993:99–112
    CrossRef
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development and Evaluation of Automated Artificial Intelligence–Based Brain Tumor Response Assessment in Patients with Glioblastoma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Jikai Zhang, Dominic LaBella, Dylan Zhang, Jessica L. Houk, Jeffrey D. Rudie, Haotian Zou, Pranav Warman, Maciej A. Mazurowski, Evan Calabrese
Development and Evaluation of Automated Artificial Intelligence–Based Brain Tumor Response Assessment in Patients with Glioblastoma
American Journal of Neuroradiology Apr 2025, DOI: 10.3174/ajnr.A8580

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
AI Tools for Glioblastoma Response Evaluation
Jikai Zhang, Dominic LaBella, Dylan Zhang, Jessica L. Houk, Jeffrey D. Rudie, Haotian Zou, Pranav Warman, Maciej A. Mazurowski, Evan Calabrese
American Journal of Neuroradiology Apr 2025, DOI: 10.3174/ajnr.A8580
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • SUMMARY:
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Brain Tumor Subtyping Image-Based search via MRI
  • Neuroimaging of Erdheim-Chester Disease
  • CE MRI for Brain Metastasis Detection
Show more Brain Tumor Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire