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CLINICAL REPORT
BRAIN TUMOR IMAGING

Development and Evaluation of Automated Artificial
Intelligence–Based Brain Tumor Response Assessment in

Patients with Glioblastoma
Jikai Zhang, Dominic LaBella, Dylan Zhang, Jessica L. Houk, Jeffrey D. Rudie, Haotian Zou, Pranav Warman,

Maciej A. Mazurowski, and Evan Calabrese

ABSTRACT

SUMMARY: This project aimed to develop and evaluate an automated, AI-based, volumetric brain tumor MRI response assessment
algorithm on a large cohort of patients treated at a high-volume brain tumor center. We retrospectively analyzed data from
634 patients treated for glioblastoma at a single brain tumor center over a 5-year period (2017–2021). The mean age was 56 6

13 years. 372/634 (59%) patients were male, and 262/634 (41%) patients were female. Study data consisted of 3,403 brain MRI
exams and corresponding standardized, radiologist-based brain tumor response assessments (BT-RADS). An artificial intelligence
(AI)-based brain tumor response assessment (AI-VTRA) algorithm was developed using automated, volumetric tumor segmenta-
tion. AI-VTRA results were evaluated for agreement with radiologist-based response assessments and ability to stratify patients
by overall survival. Metrics were computed to assess the agreement using BT-RADS as the ground-truth, fixed-time point sur-
vival analysis was conducted to evaluate the survival stratification, and associated P-values were calculated. For all BT-RADS
categories, AI-VTRA showed moderate agreement with radiologist response assessments (F1 ¼ 0.587–0.755). Kaplan-Meier survival
analysis revealed statistically worse overall fixed time point survival for patients assessed as image worsening equivalent to
RANO progression by human alone compared to by AI alone (log-rank P ¼ .007). Cox proportional hazard model analysis
showed a disadvantage to AI-based assessments for overall survival prediction (P ¼ .012). In summary, our proposed AI-VTRA, fol-
lowing BT-RADS criteria, yielded moderate agreement for replicating human response assessments and slightly worse stratification
by overall survival.

ABBREVIATIONS: 2D ¼ 2-dimensional; AI ¼ artificial intelligence; AI-VTRA ¼ artificial intelligence volumetric tumor response assessment; BT-RADS ¼ Brain
Tumor Reporting and Data System; C-index ¼ concordance index; FeTS ¼ Federated Tumor Segmentation; GBM ¼ glioblastoma; IDH ¼ isocitrate dehydrogenase;
NLP ¼ natural language processing; OS ¼ overall survival; RANO ¼ Response Assessment in Neuro-Oncology; RECIST ¼ Response Evaluation Criteria in Solid
Tumors; SD ¼ standard deviation; VDET ¼ volumetric differences for enhancing tumor; VDFLAIR ¼ volumetric differences for FLAIR

G lioblastoma (GBM) is the most common primary brain
malignancy in adults and remains difficult to treat even with

the benefit of decades of experience.1 Despite improved under-
standing of the genetic underpinnings of brain malignancies,
treatment options for GBM are limited, and survival remains

poor.2-4 GBM management is further complicated by the com-
plexity and frequency of clinical and radiologic response assess-
ments, which may occur as often as every 4weeks during active
treatment.5 Brain MRI plays a critical role in GBM treatment
response assessments and, along with comprehensive clinical
assessment, is central for determining treatment response and/or
disease progression.6,7

Given the importance of MRI for GBM treatment monitoring,
there have been extensive efforts to develop standardized MRI
response assessment criteria.8 Originally proposed in 1990, the
McDonald criteria were widely considered the standard for GBM
MRI response assessments, particularly for clinical trials.9 While
similar to other solid tumor response assessment criteria, such as
the Response Evaluation Criteria in Solid Tumors (RECIST),10

the McDonald criteria employed 2-dimensional (2D) tumor
measurements to better capture the complex shape that is typical
of GBM. In the following decades, the Response Assessment in
Neuro-Oncology (RANO) criteria and its variations6,11 super-
seded the McDonald criteria, with their primary advantage being
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the consideration of both enhancing and nonenhancing tumors
in addition to relevant treatment modalities. While RANO con-
tinues to be widely used in clinical trials, it is not commonly
used for routine clinical assessments owing to its complexity.7

RANO 2.0 updates RANO by providing unified criteria to assess
gliomas regardless of their grades and recommends volumetric
assessments.27

More recent efforts toward response assessment standardiza-
tion have included the Brain Tumor Reporting and Data System
(BT-RADS), a standardized MRI reporting system designed to
simplify brain MRI reporting for routine clinical follow-up of
patients with GBM.12-14 Similar to RANO, BT-RADS relies on
measurements of both enhancing and nonenhancing tumors, and
the BT-RADS 4 category was designed to be equivalent to the
primary imaging criterion for RANO progression.6,12 The
main advantage of BT-RADS is its ease of use and implemen-
tation. In contrast to RANO, BT-RADS has seen more rapid
adoption for routine clinical use and has been implemented
at several major brain tumor centers since it was first pro-
posed in 2018.13 RANO 2.0 and BT-RADS differ in scope
(RANO 2.0 primarily focused on clinical trials and BT-RADS
on routine assessments) and in approach. Specifically, RANO
2.0 proposes a unified set of criteria for high- and lower-grade
gliomas, while BT-RADS was designed for high-grade gliomas.
Both criteria acknowledge changes in enhancing and nonenhanc-
ing tumors, and both share similar criteria for tumor progression
(25% increase in enhancing tumor). However, other RANO 2.0
categories do not have straightforward relationships to BT-RADS
categories. For example, RANO 2.0 “partial response” requires a
50% 2D/linear decrease in enhancing tumor, while BT-RADS 1
(imaging improvement) does not specify an enhancing tumor
decrease threshold. However, BT-RADS, like its predecessors,
relies on 2D measurements, which may not accurately capture the
complex 3D shape of GBM.15 In addition, it should be acknowl-
edged that human BT-RADS assessments are an imperfect refer-
ence standard as they are somewhat subjective and dependent on
manual measurements and interpreting radiologists’ adherence to
published guidelines. While previous volumetric (3D) response
assessment criteria have been proposed, implementation has been
hindered by the difficulty in translating volumetric changes into
response assessment categories.

Automated artificial intelligence (AI)-based volumetric brain
tumor MRI segmentation has recently matured into a clinically
viable tool principally because of a large collaborative efforts such
as the multimodal brain tumor segmentation challenge16 and the
global Federated Tumor Segmentation (FeTS) initiative.17 This
has led several groups to explore the use of AI-based segmenta-
tion tools for automated volumetric GBM MRI response assess-
ment.18-21 In this work, we evaluate an automated, AI-based,
volumetric brain tumor response assessment tool on a large
cohort of patients treated at a high-volume brain tumor center.
We compare AI-based results to standardized neuroradiologist
response assessments in 2 key domains: ability to recapitulate
human response assessments and ability to stratify patients by
overall survival (OS).

MATERIALS AND METHODS
Study Population
This was a single-center, retrospective, Institutional Review
Board–approved study with a waiver for informed consent.
Candidate participants were identified by systematic search
of electronic health encounter records from 2017–2021 for all
adult patients with a diagnosis of “glioblastoma” at a high-
volume academic brain tumor center by using Center for
Medicaid Services Hierarchical Condition Category codes
(n ¼ 4689). This included both isocitrate dehydrogenase (IDH)
mutant and wild-type grade 4 astrocytomas in line with cur-
rent WHO classifications at the time of diagnosis (referred to
as “GBM” henceforth for conciseness). Exclusion criteria were:
patients lacking at least 1 MRI brain examination with and
without intravenous contrast (n¼3199) and patients lacking at
least 1 standardized neuroradiologist response assessment
(n¼856). The final study population consisted of 634 patients.
A patient flow diagram is provided as Fig 1.

Neuroradiologist Response Assessments
Formal neuroradiologist-based GBM MRI response assessments
by using the BT-RADS structured reporting system were avail-
able as part of routine clinical care. BT-RADS scores and baseline
comparison examination dates were extracted from radiology
reports by using a custom semisupervised natural language
processing (NLP) algorithm with near-perfect internal valida-
tion performance. The full data curation pipeline is shown in
Fig 2. For each patient, we searched for all reports containing
BT-RADS scores. Then, for each BT-RADS report, the NLP
algorithm retrieved the prior examination date and searched for
its prior examination with the retrieved examination date (com-
plete methodologic details and performance assessment provided
as Supplemental Data). This yielded 2446 pairs of examinations
(current and baseline prior) with BT-RADS scores. One baseline
prior can be paired with multiple follow-up examinations.
BT-RADS scores included the following numerical catego-
ries: 1 ¼ imaging improvement, 2 ¼ no appreciable imaging
change, 3 ¼ imaging worsening, 4 ¼ imaging worsening with
.25% increase in 2D enhancing tumor measurements (equiva-
lent to RANO progression).

FIG 1. Patient flow diagram for study inclusion.
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MRI Data
All routine brain tumor MRI examinations were performed with
a Brain Tumor Imaging Protocol,22 a compliant protocol
including 3D, gradient-echo, T1-weighted pre- and postcontrast
sequences and 2D, T2-weighted, and T2-FLAIR sequences. MRI
data were retrieved for each pair of examinations corresponding
to the BT-RADS scores identified in the previous section, which
resulted in 3403 unique MRI examinations. Scanner informa-
tion is included in the Supplemental Data.

Image Processing and Automated Tumor Segmentation
MRI data underwent standard image preprocessing steps includ-
ing translation-only alignment to the Montreal Neurological
Institute brain atlas (MNI352) for FOV standardization23 and
skull stripping by using a publicly available deep learning method.24

Preprocessed images then underwent automated, volumetric tumor
segmentation by using 3D convolutional segmentation neu-
ral network. This model was specifically designed for post-
treatment examinations including 4 distinct compartments:
resection cavity, enhancing tumor, necrotic tumor core, and
surrounding nonenhancing T2-FLAIR signal abnormality.
The final model was pretrained on an external postoperative
brain MRI examination. We utilized nnU-Net36 to train and vali-
date the model. Internal validation results showed a mean 6

standard deviation (SD) of 0.88616 0.2476 for enhancing tumor
and 0.9833 6 0.0372 for surrounding nonenhancing FLAIR

signal abnormality (complete methodologic details and perform-
ance assessment provided as Supplemental Data).

Artificial Intelligence Volumetric Tumor Response
Assessment (AI-VTRA)
An AI scoring system (AI-VTRA) based on volumetric differen-
ces for enhancing tumor (VDET) and surrounding nonenhancing
FLAIR hyperintensity (VDFLAIR) was computed for each pair of
examinations in the data set and was used to develop AI-based
volumetric equivalents to BT-RADS scores. BT-RADS 4 was
defined as a$40% increase in VDET, as the extrapolated volu-
metric threshold derived from 2D measurements, for measurable
disease (enhancing tumor volume greater than 1mL) consistent
with multiple previously published studies.25-27,38 Other relevant
volumetric thresholds (notably a 6 10% threshold for no signifi-
cant change) were determined empirically, as previously pub-
lished values did not exist. BT-RADS 3 was defined as either 1)
VDET between 10% and 40% increase or 2) VDET , 10% change
and VDFLAIR $ 40% increase. BT-RADS 2 was defined as either
1) VDET , 10% change or 2) VDET $ 10% increase and
VDFLAIR ≥ 40% increase. BT-RADS 1 was defined as either 1)
VDET ≥ 10% decrease or 2) VDET , 10% change and $ 40%
decrease in VDFLAIR. Complete criteria for AI-VTRA are pre-
sented in Table 1. To assess the importance of including
VDFLAIR, we also evaluated AI-VTRAET, which was solely
based on VDET (Supplemental Data).

FIG 2. Pipeline of data curation process aided by NLP and image segmentation methods.
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AI Performance for Recapitulating Human BT-RADS Scores
Performance of automated volumetric criteria for replicating
human BT-RADS scores was evaluated across the entire data
set. Composite performance for all BT-RADS categories was
assessed with the macro-F1 score. Performance for individual
BT-RADS categories was assessed with sensitivity, specificity,
precision, micro-F1 score (calculated globally across all cate-
gories), and macro-F1 score (calculated for each category and
then averaged).

AI Performance for Survival Stratification
Performance for survival stratification was assessed based on the
highest response assessment category assigned within the first
6months of MRI follow-up, which typically (though not necessar-
ily) corresponded to the second postoperative MRI examination.
Time from initial diagnosis was not available for all patients and
was not included in the analysis. Three hundred twenty-three of
634 (51%) patients had at least 1 BT-RADS assessment in the first
6months of follow-up and were included in this subanalysis. This
cohort was substratified by response score and whether they were
assigned this score by human alone, by AI alone, or by both
human and AI simultaneously. We plotted Kaplan-Meier survival
curves of each substrata to visualize survival probability. Patients
who were still alive at the last available follow-up were censored.
Log-rank tests were used to determine the pair-wise differences
between survival curves.

Multivariate Survival Modeling
Multivariate Cox proportional hazard models were applied for
human (Eq 1) and AI assessments (Eq 2) separately to assess
the relative predictive value for survival prediction. Besides the
scores, we included normalized age, sex, race, and ethnicity in
the model. Time between baseline and follow-up examinations
was considered as the time-varying covariate in the Cox model.
We removed observations due to unknown IDH status before

fitting the Cox models. The Concordance index (C-index) was
calculated for each Cox model. To compare the difference in
C-index between 2 Cox models, we applied statistical tests
that account for the paired data (see Supplemental Data for
details).

hhuman 5 h0human tð Þexpða1 � BTRADSþ a2 � Norm Ageð Þ
þa 3 � Sexþ a4 � Raceþ a5 � Ethnicityþ a6 � IDHÞ(1)

hAI 5 h0AI tð Þexpðb 1 � AIVTRA þ b 2 � Norm Ageð Þ
þb 3 � Sexþ b 4 � Raceþ b 5 � Ethnicityþ b 6 � IDHÞ(2)

Statistical Analyses
Statistical analyses were performed in Python Version 3.8 and R
Version 4.2. Kaplan-Meier estimates were computed by using the
“lifelines” package in Python. Cox modeling was performed in R
by using the “survival” package. The scale method in R was used
to normalize Age. We set the confidence level as 95%, and P val-
ues less than .05 were considered significant.

RESULTS
Patient Characteristics
Basic study participant demographic data are reported in Table 2.
The mean age was 56 6 13 years. Three hundred seventy-two of
634 (59%) patients were men, and 262/634 (41%) patients were
women. Five hundred sixty-six of 634 (89%) patients listed their
primary self-reported race as white, 41/634 (7%) as black or
African American, and 9/634 (1%) as Asian. Eight of 634 (1%)
patients reported a secondary race, and 10/634 (2%) patients did
not report race. Four hundred seventy-nine of 634 (76%) patients

Table 2: Basic demographics for the 634 patients included in
the study cohorta

Age in years Mean +/2 SD. 56 +/- 13
Sex N (%)

Male 372 (59%)
Female 262 (41%)

Primary self-reported race N (%)
White 566 (89%)
Black or African American 41 (7%)
Asian 9 (1%)
Other 8 (1%)
Not reported/declined 10 (2%)

Self-reported ethnicity N (%)
Not Hispanic 592 (93%)
Hispanic 11 (5%)
Not reported/declined 31 (2%)

IDH N (%)
Wild-type 479 (76%)
Mutant 63 (10%)
Inconclusive/missing 92 (14%)

Tumor types N (%)
Enhancing 2163 (64%)
Nonenhancing edema/FLAIR 3401 (99%)

aPatient age was assessed at the time of the first available MRI brain examination
date. “Other” self-reported races included American Indian or Alaskan native and
other. “Other/missing” IDH types included atypical IDH2 mutation, both positive
and negative, not provided, indeterminate, or no records found in the database.
The last item, “tumor types,” recorded enhancing and nonenhancing tumors (at
least 1 mL) across the 3403 examinations in the study cohort.

Table 1: Relationship between BT-RADS score and AI-VTRA for
each glioblastoma MRI follow-up assessment scorea

Assessment
Category

Assessment System (Rater)
BT-RADS

Score (Human)
AI-VTRA (Artificial

Intelligence)
Imaging improvement 1 VDET � �10%

OR
�10% . VDET ,10%
AND
VDFLAIR � �40%

No appreciable imaging
change

2 �10% . VDET ,10%
OR
VDET � �10%
AND
VDFLAIR ≥ 40%

Imaging worsening 3 10% � VDET ,40%
OR
�10% . VDET ,10%
AND
VDFLAIR ≥ 40%

Imaging worsening
equivalent to RANO
progression

4 VDET ≥ 40%

aDetailed rules for determining AI-VTRA are included in Supplemental Data.
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had an IDH wild-type tumor, 63/634 (10%) patients had an IDH
mutant tumor, and 92/634 (14%) patients had missing or incon-
clusive IDH testing.

MRI Data and Segmentation
The 634 included patients had 3403 qualifying MRI brain exami-
nations (average of 3.85 examinations per patient). The average
time between baseline and follow-up studies was 160days, with
an SD of 236 days. Automated volumetric tumor segmentation
was successfully completed for all examinations without errors.
The average segmentation time was 11.5 seconds per examina-
tion. Representative segmented MRI from 4 different patients’ ex-
amination pairs with each of the different assessment categories
are presented in Fig 3.

AI Performance for Recapitulating Human BT-RADS Scores
For recapitulating human BT-RADS scores, AI-VTRA had a higher
macro-F1 score (AI-VTRA macro-F1 ¼ 0.548) compared with
AI-VTRAET (AI-VTRAET macro-F1 ¼ 0.535). Performance
metrics for predicting each of the individual BT-RADS scores
are provided in Table 3. AI-VTRAET alone demonstrated
improved performance compared with AI-VTRA for a single
score, BT-RADS 2 (no significant change). Overall, automated
volumetrics yielded moderate performance (F1. 0.7) for pre-
dicting neuroradiologist BT-RADS scores of 1, 2, and 4, and
yielded moderate performance (F1. 0.55) for predicting BT-
RADS 3. Total counts and percentages for each score and an
analysis of major discrepancies between human and AI assess-
ments are provided in the Supplemental Data.

FIG 3. Example MR images, radiologist response assessment categories, and volumetric changes for 4 patients at 2 different time points.

Table 3: Performance metrics (macro-F1, micro-F1, sensitivity, specificity, and precision) for AI-VTRA/AI-VTRAET predictions of
radiologist-based response assessment. Within each category, we binarized the BT-RADS and AI predictions based on the target
score and computed the metrics

Imaging Improvement
(BT-RADS 1)

No Significant Imaging
Change (BT-RADS 2)

Imaging Worsening
(BT-RADS 3)

Imaging Worsening
Equivalent to RANO

Progression (BT-RADS 4)

AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA
Macro-F1 0.747 0.755 0.760 0.750 0.561 0.587 0.705 0.705
Micro-F1 0.857 0.870 0.765 0.757 0.695 0.689 0.831 0.831
Sensitivity 0.747 0.700 0.793 0.746 0.222 0.298 0.596 0.596
Specificity 0.873 0.895 0.746 0.765 0.920 0.875 0.872 0.872
Precision 0.474 0.526 0.672 0.675 0.568 0.530 0.450 0.450
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Fixed Time Point Survival Analysis
Four hundred sixty-five of 634 (73%) patients died during the fol-
low-up period. Median OS for the cohort was 443 days from the
first available MRI examination, and median survival after the
6-month time point selected for the fixed time point survival
analysis (S6mo) was 401 days. Median S6mo stratified by the high-
est human (BT-RADS) response category assessed during the first
6months of follow-up was 401 days for BT-RADS 1, 625days for
BT-RADS 2, 394 days for BT-RADS 3, and 207 days for BT-
RADS 4. Median S6mo stratified by the highest AI (AI-VTRA)
category assessed during the first 6months of follow-up was
450days for imaging improvement, 501 days for no significant
change, 346 days for imaging worsening, and 305days for image
worsening equivalent to RANO progression. Survival curves for
each BT-RADS and AI-VTRA category are presented in Fig 4.
There was statistically worse overall S6mo for patients assessed as
image worsening equivalent to RANO progression by human
alone compared with by AI alone (log-rank P ¼ .007). For other
assessment categories, S6mo was not significantly different when
assessed by AI alone versus human alone.

Multivariate Survival Modeling
A multivariate Cox proportional hazard model for S6mo yielded a
C-index for human assessments versus AI assessments (0.637
[0.600, 0.674] versus 0.594 [0.555, 0.633], P ¼ .012), indicating
significant improvement in predictive ability for human BT-
RADS assessment. We showed hazard ratios and 95% CI of fitted

fixed effects in Table 4 and Table 5 for BT-RADS and AI-
VTRAS, respectively. Both models suggested that Imaging RANO
Progression (score of 4) had significantly worse survival than No
change (score of 2). The model that included BT-RADS suggested
significantly worse survival in Improving (score of 1) and
Worsening (score of 3) than No change.

DISCUSSION
The goal of this study was to compare AI-based volumetric GBM
MRI response assessment with standardized radiologist response
assessments. First, we addressed the ability of AI to recapitulate
radiologist response assessments. Our results show that AI-based
volumetric response assessment yielded overall moderate perform-
ance (Macro F1� 0.7) for recapitulating most human response
assessment categories (BT-RADS 1, 2, and 4). Performance was
lowest (Macro F1� 0.6) for predicting BT-RADS 3. This is
likely related to the high variability of this assessment category,
which ranges from minimal changes to relatively large tumor
volume increases that do not meet the threshold for RANO pro-
gression. Prediction of this category is further complicated by
the need to specify a volumetric threshold for “no significant
change,” which is incongruous with human response assessments
where this threshold may differ depending on the clinical sce-
nario. For example, radiologists may intuitively ignore T2/FLAIR
signal attributed to posttreatment changes, whereas the volumet-
ric segmentation model does not explicitly distinguish nonen-
hancing tumor versus treatment effect. These results suggest that

FIG 4. Fixed time point Kaplan-Meier survival curves for each response assessment category stratified by AI- and radiologist-based assessment
methods. * Indicates a statistically significant difference.
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AI-based volumetric response assessments may be better suited
as a clinical decision support adjunct rather than a replacement
for radiologists’ assessments.28 While different thresholds may
ultimately be relevant for IDH mutant versus wild-type grade
4 tumors, they are currently treated the same by BT-RADS. The
subgroup analysis of the IDH wild-type tumor data set (included
in the section IDH Subgroup Analysis in Supplemental Data)
showed that by using the same threshold, the composite metric
AI-VTRA outperforms the AI-VTRAET in both the IDH wild-type
data set and the original data set.

A separate but related domain for evaluating AI-based volu-
metric response assessment is its ability to stratify patients by OS.
Compared with a similar survival analysis study on BT-RADS
stratification conducted by Kim et al,39 our study reported the
same nonsignificant hazard ratios for IDH status and significantly
high hazard ratios for score 4. For all assessment categories other
than BT-RADS 4, there was no statistically significant difference

in OS, whether assigned by AI alone or
human alone. However, OS was statisti-
cally lower for patients assessed as BT-
RADS 4 by human alone compared
with AI alone, with a median S6mo

of 207 versus 305 days, respectively.
Interestingly, when BT-RADS 4 was
assigned by both AI and human assess-
ments, survival was more similar to
those assigned by AI alone. In addition,
though there were no statistically sig-
nificant survival differences in other
assessment categories whether assigned
by AI alone versus human alone, human
assessment resulted in larger differences
in survival between assessment catego-
ries. These findings are indicative of
the fact that human assessments often
draw on additional findings or clinical
history not captured by the proposed
AI method, such as the progression of
nonenhancing tumors in the setting of
anti-angiogenic therapy. Incorporating
this additional data will likely be im-
portant for improving AI-based GBM
assessment methods in the future. We
observed poorer S6mo for BT-RADS 1
(401 days) than BT-RADS 2 (625days),
almost equivalent to BT-RADS 3
(394 days). We suspect that this might
be due to bevacizumab pseudoresponse
in patients with late-stage recurrent
disease, which is consistent with the
prior published report40 on survival fol-
lowing BT-RADS assessment.

GBMMRI response assessments are
highly complex owing to the highly
variable appearance of recurrent tumor
and treatment changes. There are sev-
eral well-known issues with current

response assessments that could be addressed with AI, includ-
ing the inherent inaccuracies and high interrater variability of 2D
measurements.11,29-32 The results of this study add to a growing
body of literature focused on AI-based GBM MRI response
assessments,28,33,34 which, like many applications of AI in neuro-
oncology, have yet to deliver promised benefits in a meaningful
way.35 However, our results highlight 3 important observations: 1)
simple rule-based AI volumetric response assessments yield only
moderate performance for predicting human response assess-
ments, 2) by using this approach, human assessments yielded a
small but significant improvement in survival stratification per-
formance, and 3) major discrepancies between human and AI
assessments were rare, and both human and AI error were iden-
tified as causes. Overall, these results highlight the need for bet-
ter AI models that can incorporate additional clinical and
imaging variables into the response assessment. Though poten-
tially incomplete segmentation of the lesion from the AI model

Table 4: Hazard ratios, confidence intervals, and P values of BT-RADS, age, sex, primary
self-reported race, self-reported ethnicity, and IDH

Variable Level HR [95% CI] P Value
BT-RADS 2 – No change REFa REFa

1 – Improve 1.75 [1.05, 2.92] .03
3 – Worsening 1.48 [1.03, 2.13] .03
4 – RANO progression 2.62 [1.71, 4.00] , .001

Age 1.12 [0.95, 1.30] .16
Sex Female REFa REFa

Male 1.30 [0.99, 1.71] .06
Primary self-reported race White REFa REFa

Black or African American 0.93 [0.56, 1.56] .78
Asian 0.48 [0.11, 2.04] .32
American Indian or Alaskan Native 0.93 [0.11, 8.00] .95
Not reported/declined 2.12 [0.54, 8.40] .28
Other 1.54 [0.31, 7.57] .60

Self-reported ethnicity Hispanic/Latino REFa REFa

Not Hispanic/Latino 1.24 [0.57, 2.67] .58
Not reported/declined N/A N/A

IDH Negative (wild-type) REFa REFa

Positive (mutant) 0.69 [0.31, 1.51] .35
a All subsequent comparisons are relative to this reference level.

Table 5: Hazard ratios, confidence intervals, and P values of AI-VTRA, age, sex, primary
self-reported race, self-reported ethnicity, and IDH

Variable Level HR [95% CI] P Value
AI-VTRA 2 – No change REFa REFa

1 – Improve 1.26 [0.86, 1.87] .24
3 – Worsening 1.20 [0.81, 1.77] .36
4 – RANO progression 1.54 [1.07, 2.21] .02

Age 1.11 [0.95, 1.30] .18
Sex Female REFa REFa

Male 1.25 [0.95, 1.65] .11
Primary self-reported race White REFa REFa

Black or African American 1.02 [0.61, 1.71] .95
Asian 0.45 [0.11, 1.94] .28
American Indian or Alaskan Native 1.29 [0.15, 11.12] .82
Not reported/declined 2.04 [0.51, 8.20] .32
Other 1.34 [0.27, 6.56] .72

Self-reported ethnicity Hispanic/Latino REFa REFa

Not Hispanic/Latino 1.27 [0.59, 2.72] .54
Not reported/declined N/A N/A

IDH Negative (wild-type) REFa REFa

Positive (mutant) 0.68 [0.31, 1.51] .34
a All subsequent comparisons are relative to this reference level.
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may contribute to the survival discrepancy between AI and
human assessment, we do not believe that incomplete segmenta-
tion of tumors was a major factor in our study. Based on the
defined rules for AI-VTRA and our evaluations, we believe that
the primary factors are 1) a 25% 2D increase does not precisely
correspond to a 40% volumetric increase and 2) the fact that
human determination of “no significant change” does not neces-
sarily correspond to any specific volumetric threshold.

Several prior studies have investigated automated brain tumor
MRI segmentation as a means of assessing longitudinal tumor bur-
den and even predicting time to progression and OS.18,19,21,40,41

However, these studies have largely focused on automated volu-
metrics as an alternative to standard response assessment criteria
rather than as a comprehensive method for automation of these
criteria. For example, Kickingereder et al21 compared brain tumor
growth dynamics derived from automated segmentation with cen-
tral RANO assessment for a longitudinal multi-institution cohort
of 532 patients and found that the volumetric assessment was supe-
rior for predicting OS. However, to our knowledge, no prior work
has evaluated automated volumetrics for predicting human BT-
RADS scores or RANO progressive disease assessments. Our
study differs from prior work in that it includes a larger number
of patients and focuses on recapitulating human response
assessments. This approach focuses on a paradigm of automat-
ing existing assessments rather than proposing new ones.

Pseudoprogression of GBM is a posttreatment phenomenon,
with variable incidences from at least 9%, that can confuse the
interpretations of tumor growth due to the pathology.37 This
study focuses exclusively on objective imaging change rather than
subjective interpretation of the reason for this change. As such,
the problem of pseudoprogression (and pseudoresponse) is not
directly addressed and is a major limitation of this approach.
Future work will be required to automate prediction of true ver-
sus pseudoprogression effectively and will likely require addi-
tional inputs such as treatment history and advanced imaging
modalities like perfusion-weighted MRI.37,38

This study has several important limitations. First, this was a
single-center retrospective study, which limits the generalization
of its results. One generalization issue was the class imbalance
favoring unchanged/improving conditions in our data set, which
may lead to the under-representation of progression cases in this
study. As an attempt to account for this issue, we reported mul-
tiple classification metrics. Second, this study used a relatively
simplistic logic-based approach for assigning tumor volumetric
differences to response categories. Third, this study relied on
BT-RADS scores for radiologist-based response assessments.
The BT-RADS system has been previously validated in several
studies13; however, it is not yet as widely utilized as other response
assessment criteria such as RANO. Fourth, though our NLP algo-
rithm reached 99% accuracy in our internal validation, we would
expect minor NLP- and human-induced errors in information
retrieval from the reports, which may cause inexplicable dis-
crepancies between AI versus human evaluations. Fifth, we did
not include new lesions, which is part of the RANO progression
criteria.7 In future studies, we propose to apply a connected
component algorithm to evaluate the growth of each separate
lesion region and incorporate this analysis into the AI-VTRA

rules. Finally, AI-based response assessments did not benefit
from any information on treatment (such as radiation or anti-
angiogenic therapy), which fundamentally limits their ability to
replicate radiologist-based response assessments.

CONCLUSIONS
AI-based volumetric GBM MRI response assessment following
BT-RADS criteria can provide moderate performance for repli-
cating human response assessments and show comparable per-
formance for OS stratification. While this approach is unlikely to
be useful for stand-alone response assessment, it may be useful
for certain scenarios where radiologist interpretations are infeasi-
ble or as an adjunct to radiologist-based response assessment.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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