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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Leveraging Physics-Based Synthetic MR Images and
Deep Transfer Learning for Artifact Reduction in

Echo-Planar Imaging
Catalina Raymond, Jingwen Yao, Bryan Clifford, Thorsten Feiweier, Sonoko Oshima, Donatello Telesca,

Xiaodong Zhong, Heiko Meyer, Richard G. Everson, Noriko Salamon, Timothy F. Cloughesy, and Benjamin M. Ellingson

ABSTRACT

BACKGOUND AND PURPOSE: This study utilizes a physics-based approach to synthesize realistic MR artifacts and train a deep
learning generative adversarial network (GAN) for use in artifact reduction on EPI, a crucial neuroimaging sequence with high accel-
eration that is notoriously susceptible to artifacts.

MATERIALS AND METHODS: A total of 4,573 anatomical MR sequences from 1,392 patients undergoing clinically indicated MRI of
the brain were used to create a synthetic data set using physics-based, simulated artifacts commonly found in EPI. By using multiple
MRI contrasts, we hypothesized the GAN would learn to correct common artifacts while preserving the inherent contrast information,
even for contrasts the network has not been trained on. A modified Pix2PixGAN architecture with an Attention-R2UNet generator
was used for the model. Three training strategies were employed: (1) An “all-in-one” model trained on all the artifacts at once; (2) a
set of “single models”, one for each artifact; and a (3) “stacked transfer learning” approach where a model is first trained on one arti-
fact set, then this learning is transferred to a new model and the process is repeated for the next artifact set. Lastly, the “Stacked
Transfer Learning” model was tested on ADC maps from single-shot diffusion MRI data in N ¼ 49 patients diagnosed with recurrent
glioblastoma to compare visual quality and lesion measurements between the natively acquired images and AI-corrected images.

RESULTS: The “stacked transfer learning” approach had superior artifact reduction performance compared to the other approaches
as measured by Mean Squared Error (MSE ¼ 0.0016), Structural Similarity Index (SSIM ¼ 0.92), multiscale SSIM (MS-SSIM ¼ 0.92),
peak signal-to-noise ratio (PSNR ¼ 28.10), and Hausdorff distance (HAUS ¼ 4.08mm), suggesting that leveraging pre-trained knowledge
and sequentially training on each artifact is the best approach this application. In recurrent glioblastoma, significantly higher visual
quality was observed in model predicted images compared to native images, while quantitative measurements within the tumor
regions remained consistent with non-corrected images.

CONCLUSIONS: The current study demonstrates the feasibility of using a physics-based method for synthesizing a large data set
of images with realistic artifacts and the effectiveness of utilizing this synthetic data set in a “stacked transfer learning” approach
to training a GAN for reduction of EPI-based artifacts.

ABBREVIATIONS: BTIP ¼ brain tumor imaging protocol; GAN ¼ generative adversarial network; HAUS ¼ Hausdorff distance; MS-SSIM ¼ multiscale struc-
tural similarity index; MSE ¼ mean square error; NAWM ¼ Normal Appearing White Matter; PSNR ¼ peak signal to noise ratio; RANO ¼ Response Assessment
in Neuro Oncology; RAS ¼ Right, Anterior, Superior; SSIM ¼ structural similarity index

EPI is one of the most widely used MRI pulse sequences for
neuroimaging applications due to its high efficiency of image

acquisition up to 10 times faster than conventional MRI sequences.

This acceleration facilitates the measurement of essential parame-
ters, encompassing perfusion, microstructural, functional, and other
physiologic aspects in clinically feasible time frames. Unfortunately,
this high acquisition efficiency can come at a significant cost, as
EPI is prone to various imaging, affecting the quality and diagnos-
tic utility of the images. Key artifacts include off-resonance effects
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(e.g. fat-water shift, geometric distortions from B0 inhomoge-
neities from the patient, and signal loss due to dephasing),
Nyquist ghosting from poor shimming, gradient coil heating,
receiver filter asymmetry, susceptibility, or induction of eddy
currents in coils and/or magnet housing in response to the
rapidly changing gradients1. These artifacts distort image
geometry and affect contrast, potentially leading to misinter-
pretations of critical anatomical features and interfering with
quantitative analyses. Numerous traditional (e.g.2-5) and deep
learning approaches6-11 have been proposed to mitigate EPI arti-
facts; however, these often reduce a few specific types of artifacts,
require calibration scans, advanced offline reconstruction of raw
data, or involve computationally intensive post-processing that
isn’t feasible in real-time clinical settings.

In the current work, we propose a novel artifact reduction
methodology to address these limitations. First, we provide an
alternative to gathering large data sets by utilizing MR physics to
synthesize realistic acquisition artifacts. Data-driven methods
such as deep learning benefit from large diverse data sets12, how-
ever, access to large, heterogeneous medical imaging data sets
with various degrees of image artifacts for deep learning-based ar-
tifact correction can be difficult, expensive, and time-consuming
to obtain. A physics-based approach that generates synthetic
training data with various degrees and types of image artifacts
using retrospectively collected high-resolution anatomical MRI
images provides a framework for using known physical principles
to create a realistic data set for deep learning model development.

Additionally, the current study aims to test the hypothesis
that a “Stacked Transfer Learning” strategy provides better per-
formance by using a sequence of models progressively trained on
increasingly complex artifacts compared with a single model with
identical architecture trained on a data set containing all artifacts
in a single session as well as individual models trained for each ar-
tifact. Importantly, this methodology is only feasible through the
utilization of a synthetic data set where artifacts can be added
individually, and their influence precisely controlled.

Furthermore, by leveraging MR physics-based artifact synthe-
sis, our strategy eliminates the necessity for specialized acquisi-
tion, capitalizing on both large retrospective data and a priori
anatomical knowledge to enhance reconstruction. By incorporat-
ing prior anatomical knowledge, we can impose realistic anatomi-
cal priors on the reconstruction process, guiding the algorithm
toward solutions that are anatomically plausible. Previous studies
have demonstrated the effectiveness of incorporating anatomical
constraints into reconstruction methods13,14. Notably, these meth-
ods have proven successful in maintaining the fidelity and anatomi-
cal accuracy of reconstructed images. Our approach builds upon
this established principle, integrating it into the artifact correction
algorithm, leading to more faithful representations of the underly-
ing anatomy.

Finally, we assess the efficacy of the model applied to ADC
maps from single-shot diffusion MRI data in patients with recur-
rent glioblastoma. By including multiple image contrasts in our
training data set, we hypothesized the network would be able to
learn to correct EPI-based artifacts, while preserving the inherent
information of in different image contrasts, even in image con-
trasts it has not been exposed to previously. This comprehensive

strategy aligns with the overarching goal of enhancing the diag-
nostic quality of highly accelerated imaging protocols in neuroi-
maging applications.

To summarize, the aim of this study is to develop a novel arti-
fact correction methodology for EPI, leveraging two technical
advancements: (1) synthesis of realistic artifacts based on MR
physics, which allows for the generation of diverse training data
sets for deep learning models; (2) “Stacked Transfer Learning”
approach where models are trained progressively on increasingly
complex artifacts. This approach is designed to address a broad
range of artifacts simultaneously, improving overall image quality
and preserving diagnostic accuracy. The efficacy of the model
will be evaluated using single-shot diffusion MRI data in patients
with recurrent glioblastoma.

MATERIALS AND METHODS
This study aimed to develop and validate a deep learning-based
approach for artifact reduction in MRI images, particularly focus-
ing on EPI sequences where artifacts are prevalent. The method-
ology was divided into 4 parts:

• Artifact data set Synthesis: We created a synthetic data set
from artifact-free MRI images using physics-based simulations
to introduce common artifacts such as magnetic susceptibility,
chemical shift, fat saturation, and N/2 Nyquist aliasing.

• Model Training: The data set was then used to train a modi-
fied GAN architecture designed for artifact correction. The
training process involved preprocessing the data, introducing
anatomical constraints, and optimizing the model by compar-
ing 3 training strategies.

• Model Evaluation: The trained model was evaluated using a
combination of quantitative metrics and qualitative assessments.

• Clinical Validation: The final model was applied to clinical
ADC maps derived from single-shot diffusion-weighted EPI
data to assess its performance in a real-world setting in a
cohort of patients with recurrent glioblastoma.

Artifact Data Set Synthesis
A synthetic data set with physics-based simulated artifacts was
created from 4,573 artifact-free acquisitions from 1,392 patients
undergoing routine MRI at our institution using the standardized
BTIP protocol15 between January 2017 and December 2020.
The mean age of the cohort is 52.4 years (standard deviation
18.0 years). Age spanned from 6 months to 102 years, and the
gender distribution was balanced with 52% male and 48% female
patients. The data set included 1,341 T1-weighted pre-contrast,
932 T1-weighted post-contrast, 1,313 T2-weighted, and 987 T2-
weighted FLAIR exams (Supplemental Table 1). Table 1 highlights
the demographic characteristics of each of the datasets.

Magnetic Susceptibility (Dx ) Artifacts. To simulate the off-reso-
nance artifacts, including geometric distortion, signal loss, and
signal pile-up, induced by the susceptibility differences at boun-
daries between air and various tissue types, a synthetic suscepti-
bility map was created using the segmentation of CT image voxels
into clusters corresponding to air, tissue, and bone. We used one
single CT image, obtained from The Cancer Imaging Archive
(https://www.cancerimagingarchive.net/, data set OPC-Radiomics,
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ID OPC-00056), which covers the head, neck, and shoulder.
Coverage of the head, neck, and shoulder was specifically desired
due to considerable magnetic field inhomogeneities from tissue
interfaces near the nasal cavity, mouth, sphenoid sinus, temporal
bones, as well as the air/tissue interfaces at the shoulders16. This
CT image was registered to MNI stereotaxic space and performed
threshold-based segmentation of air, tissue and bone for subse-
quent use, with air, �200 HU, bone. 200 HU, and tissue mask
containing the remaining voxels. A simulated susceptibility distri-
bution was subsequently computed from the segmentations, using
susceptibility values of 0.40, -8.44, and -9.04 ppm assigned to air,
bone, and soft tissue, respectively.

With the synthetic three-dimensional susceptibility distribu-
tion and assuming a static magnetic field strength of 3T, the field
map was calculated using the Fourier-based calculation method
proposed by Bouwman et al.17. To mimic a more realistic head
positioning and introduce more variability, we rotated the 3D
patient data set registered to MNI space along a random axis
by 610°. Lastly, the global field inhomogeneity in the brain
was removed by subtracting the mean value of DB0 within the
brain from the DB0 maps. Using simulated field map DB0, we
performed off-resonance artifact simulation using the Fourier-
based Off-REsonanCe Artifact simulation in the STeady-state
(FORECAST) algorithm18.

Chemical Shift Artifact and Fat Saturation. Artifacts were simu-
lated as a shift of the pixels containing the fat-containing non-
brain tissue. The brain was first segmented using the Brain
Extraction Tool (FSL, Functional Magnetic Resonance Imaging
of the Brain Software Library v6.0, Oxford, UK). A fat-containing
tissue mask for each patient was determined by subtracting the
brain mask and then applying a threshold to remove the back-
ground pixels. The fat saturation artifact was simulated by ensur-
ing that these shifts also accounted for the variations in signal
intensity due to fat suppression techniques, thus reflecting the
combined effects of chemical shift and fat saturation. The fraction
of signal intensity experiencing pixel shift was a random variable
between 0 and 1, representing the fat fraction. The pixel shift was
determined using the fat-water frequency difference at 3T (430
Hz) and the pixel bandwidth along the phase-encoding direction.
The pixel bandwidth was determined by a random variable of
echo-spacing between 0.6 to 1.3 ms. A total of 128 pixels and a
GeneRalized Autocalibrating Partially Parallel Acquisitions
(GRAPPA) factor of 3 along the phase-encoding direction was

assumed. After calculating the size of the chemical-shift artifact, a
fractional pixel shift using linear interpolation was performed.

N/2 Nyquist Aliasing Artifact. N/2 Nyquist artifact was simu-
lated as a linear phase difference between the data sampled in
even and odd k-space lines. The artifact-free anatomical images
were first transformed to the frequency domain and the phase ar-
tifact was added along the readout direction (kx) to the even k-
space lines in the phase-encoding direction (ky). The linear phase
ramp was simulated using a constant term b and a first-order
term a: f kxð Þ5 akx þ bð Þp . Both parameters a and b were ran-
domly drawn from normal distributions centered at zeroes, with
standard deviations of 0.2 and 0.04, respectively. The directions
of the frequency- and phase-encodings were also randomized for
variability, with an 80% chance of phase-encoding direction being
anterior-posterior and a 20% chance of being left-right. After
adding the linear phase artifact to the even k-space lines, the data
were transformed back to the image domain.

Gibbs artifacts were simulated by sampling the central sec-
tions of k-space with a rectangular window of varying sizes, rang-
ing between 60% and 30% of the original size, effectively altering
the image resolution. In addition to this, Rician noise was intro-
duced separately as part of the data augmentation process during
training. This noise was added randomly to the images to increase
the diversity and robustness of the training data set, but it was not
involved in the simulation of Gibbs artifacts.

All images underwent preprocessing to improve model train-
ing efficiency and ensure data consistency. Intensity values were
normalized to a standard range, and images were resized to a
common dimension of 256x256x128. To facilitate consistent spa-
tial interpretation, the orientation of all images was set to RAS.
To confirm fidelity and “realism” when compared to real-world
EPI artifacts, we consulted with radiologists, physicists from both
industry and academia, neurosurgeons, and neuro-oncologists.
For robustness of the model, we also included combinations of
artifacts that are somewhat not-realistic (e.g. chemical shift in
one direction and Nyquist ghosting in a different direction), as a
greater depth of complex artifacts should allow the model to
better correct less complex artifacts observed in the real-world.
Figure 1 illustrates an example of a T2-weighted image with the
sequential addition of various EPI-based artifacts used for the
current project.

To incorporate prior anatomical knowledge and guide artifact
correction towards anatomically plausible reconstructions, we
employed edge detection. Utilizing a Canny edge detection

Table 1: Demographic characteristics of each dataset

Demographic
Characteristic Training Set Validation Set Test Set

Qualitative
ADC Clinical
Validation

Quantitative
ADC Clinical
Validation

Number of patients 1088 153 151 49 22
Number of scans 3573 500 500 49 22
Age (years), mean (SD) 52.03 (6 18.19) 53.57 (6 17.42) 53.53 (6 16.76) 60.32 (6 9.37) 59.95 (6 6.72)
Age range (years) 1.5 �91 0.5 �102 6 �93 35 �85 49 �78
Sex

Male 575 53% 79 51% 73 48% 29 59% 13 59%
Female 513 47% 73 48% 78 52% 20 41% 9 41%
Unknown 0 0% 1 1% 0 0% 0 0% 0 0%

Note:—1 patient lacked demographic information on their DICOM headers due to anonymization procedures.
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algorithm19,20, we generated edge maps from scans separate
from the artifact-containing input data. This approach aimed to
minimize information leakage during training, where the model
might exploit edge information directly related to the ground
truth. For example, if the input was a T1-weighted image with
artifacts, the edge map was derived from a co-registered T2-
weighted image. This strategy assisted the model to learn inher-
ent anatomical features rather than artifact-specific edges for
reconstruction. The synthetic data set was divided into subsets,
with 3,573 images allocated for training and two additional sets
of 500 images designated for validation and testing purposes.

Model Training
A modified GAN architecture based on Pix2Pix21 was used in the
current study due to its efficacy in image-to-image translation
tasks (Fig 2A). The discriminator in the Pix2Pix GAN consists of
a PatchGAN network with a classification matrix output (Fig 2B).
The generator consists of a whole image-to-image auto-encoder
network with U-Net skip connections to generate better image
quality at higher resolutions. We modified the generator to a U-Net
to include residual units22, as well as Recurrent Convolutional
layers23 with gates24 (AttentionR2UNet) (Fig 2C). This architectural
modification offers several advantages. First, the inclusion of residual
units addresses the issue of vanishing gradients commonly encoun-
tered in deep models, proving especially beneficial for the training of
deep architectures. Second, the utilization of recurrent convolutional
layers facilitates improved feature representation through feature
accumulation. Third, the integration of attention gates enables the
network to concentrate on the salient areas within the images.

Due to GPU limitations, the images were processed in smaller
batches of 16 slices at a time from the reformatted 256�256�128
images. This approach allowed us to manage computational con-
straints while still utilizing 3D spatial information across slices.
The input to the network was structured as a 2-channel image,
where the first channel contained the artifact image, and the sec-
ond channel included an edge detection image.

In the 3D PatchGAN architecture, each convolutional layer
has a kernel size of 3�3�3 with a stride of 2 and padding of 1.
Across four layers, this configuration results in a receptive field of
31�31�16. The effective receptive field in the third dimension is
constrained to 16, ensuring that the network effectively captures
the entire input volume along this axis, enabling the network to
learn intricate details over a substantial area of the image while
maintaining focus on the complete depth of the input.

The GAN was trained using the Adam optimizer and binary
cross-entropy adversarial loss function in conjunction with L1
reconstruction loss (weights 1:200). The models were imple-
mented in Python 3.10.12 with the deep learning framework
Pytorch 1.11.0. The training process was executed using a GPU
cluster comprised of 44 NVIDIA GPUs: 20 Quadro RTX 8000,
8 Tesla V100, and 16 GeForce RTX 2080 Ti.

We leveraged the ability to create multiple synthetic data sets
to train multiple models, thereby enabling comprehensive per-
formance analysis of diverse training strategies (Fig 2D–I). All
strategies were allowed to train for a maximum of 130 epochs
total or until the model converged. Loss curves for the training
process are presented in Supplemental Fig. 1 showing all models
adequately converged and would not benefit from additional
training. The models used for the current study included:

1) “All-in-one”model: Utilizes a single data set that includes all
artifacts in a single training session (Fig 2D). The training was
stopped once the model converged 50 epochs, with a batch
size of 4. Testing consisted of direct application of the input
images to the single “all-in-one”model (Fig 2G).

2) Single models: Utilizes different data sets, each with only one
simulated artifact, to train independent models for each arti-
fact (Fig 2E). The final images represent a data set that has
been sequentially passed through each model (Fig 2H). Each
model was trained for 50 epochs, with a batch size of 4. All
models converged before training was stopped.

3) Stacked Transfer Learning approach:Utilizes three different
data sets, where each data set included a new artifact added
onto the previous data set (data sets A-C). A series of models
were trained on these data sets with sequentially added arti-
facts, with the weights of each trained model used as the initi-
alization parameters for the subsequent model (Fig 2F). A
final fine-tuning step is used to improve edge mismatch. We
theorized this strategic initialization process would enable the
network to leverage knowledge gained from prior training
stages, facilitating the effective removal of complex image
artifacts in a cumulative manner. Testing consisted of direct
application of the input images to a final model (Fig 2I). The
proposed methodologies adhered to the guidelines outlined
in the CLAIM checklist.

Model Evaluation
Three key image quality metrics were used to compare the per-
formance of the algorithms for image quality: MSE, SSIM25, and

FIG 1. Example of simulated EPI artifacts on a T2-weighted image of a patient with a glioma.
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MS-SSIM26. SSIM is a measure of image similarity that considers
the luminance, contrast, and structure of the image while MSE is
a measure of the pixel-wise difference between two images. For
evaluating noise removal effectiveness while preserving predic-
tion fidelity, PSNR was calculated. Finally, the HAUS was used to
quantify improvements in geometric distortion arising from DB0
susceptibility artifacts27. This performance metric assesses how
closely the surfaces align by measuring the maximum distance
between corresponding points on the surfaces. In our case, we
extracted the edges of the major structures in the brain using
Canny edge detection (s ¼ 3) and calculated the HAUS between
these edges and their counterparts in the ground truth images.

While the primary goal of artifact reduction models is to
improve image quality by removing geometric distortion, testing
them solely on artifact-laden images could be misleading.
Evaluating the various models’ performance on clean, artifact-
free images offers crucial insights beyond its ability to remove
artifacts, revealing potential unintended consequences on healthy
image content. Therefore, we assessed the performance of the
three models on both synthetic data sets with artifacts present as
well as undistorted images (ground truth of the test set).

Clinical Validation Using Single-Shot Diffusion-Weighted EPI
To assess the performance of the final “Stacked Transfer
Learning” model, we applied it to ADC maps from single-shot
diffusion-weighted EPI data in a retrospective cohort of patients
diagnosed with recurrent glioblastoma who received cytotoxic
chemotherapy (lomustine, temozolomide, or carboplatin) between
2004 and 2022 at our institution. All patients provided written
informed consent to participate in this study, which was approved
by our IRB28. The study included only patients who had baseline
pre-treatment scans with contrast-enhanced T1-weighted images

performed within a month before initiating second-line therapy.
Importantly, patients did not receive anti-angiogenics and had no
intervening surgeries or treatment interventions before RANO-
defined disease progression29. 56 patients met the inclusion criteria
(mean age 60.32 years (6 9.37 standard deviation); 29 males) and
49 had ADC imaging at baseline and 22 scans that followed BTIP.
NAWM normalization of the ADC images was done with three
spheres in the centrum semiovale30.

To assess the effectiveness of the model in removing artifacts
from EPI images, a blinded evaluation was performed by two in-
dependent readers with expertise in neuro-oncology (Reader 1:
radiologist with 11 years of experience in neuroradiology; Reader
2: imaging scientist with 15 years of brain tumor imaging and
clinical trial experience) following the quality assurance method-
ology for diffusion MR images proposed by Ellingson et. al31. The
ratings were based on a categorical scale from 1 to 5, where a
score of 1 indicated that the image was unusable due to artifacts
significantly affecting the tumor area, and a score of 5 indicated
no distortion or artifacts. Each radiologist evaluated both the
original (unprocessed) and model corrected images for a total of
98 images. Demographic details for these patients are in Table 1.

Statistical Analysis
Spearman correlation of image quality assessment between Readers
A and B before and after artifact correction was calculated to assess
the heterogeneity. The scores for the original ADC images were
compared to the scores on the model predicted ADC images using
the Wilcoxon Signed-Rank Test. Additionally, Spearman correla-
tion coefficients were calculated to assess the association between
the expert ratings of the original and model predicted images.
Cohen’s weighted kappa was used to evaluate inter-rater reliabil-
ity, quantifying the level of agreement between two readers while

FIG 2. A, GAN schematic. B, PatchGan discriminator architecture. C, Attention-R2UNet generator Network architecture. D, Sequence diagram
for the training portion of the all-in-one model trained with a data set of all artifacts. E, Sequence diagram for the training portion of the single
models method, where separate models are trained individually with each set of artifacts. F, Sequence diagram for the training portion of the
stacked transfer learning approach, where a model is first trained on 1 artifact set, then this learning is transferred to a new model, and the pro-
cess is repeated for the next artifact set. G, Sequence diagram for testing the all-in-one model trained with a data set of all artifacts. H,
Sequence diagram for testing the single models method, where the data are passed through each single model sequentially. I, Sequence diagram
for the testing of the stacked transfer learning approach.
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accounting for the possibility of agreement occurring by chance.
To further assess the model’s impact on tumor regions, ROIs
were created for both the contrast enhancing and T2 hyperin-
tense lesions using the NS-HGlio artificial intelligence software
from Neosoma (Neosoma Inc, Groton, MA, https://neosomainc.
com)32. The normalized average ADC values within the ROIs of
22 patients in the cohort that followed the BTIP protocol were
used to evaluate the consistency of measurements between native
and predicted ADC images using paired t-test. Additionally,
Pearson correlations were performed between the native and
“corrected” measurements in the T2 hyperintense as well in the
contrast enhancing ROIs.

RESULTS
Results suggested the “Stacked Transfer Learning” approach had
significantly better performance when examining the testing data
set with synthetic artifacts present (Table 2), with the lowest MSE
(0.0016 vs. 0.0024 and 0.0023 for “all-in-one” and “single models”,
respectively), highest SSIM (0.92 vs. 0.88 and 0.89), and highest
MS-SSIM (0.92 vs. 0.88 and 0.90). This indicates the model gener-
ated images using the “Stacked Transfer Learning” approach bet-
ter resembles the reference images in terms of pixel values and
better captures anatomical details at different scales. Additionally,

this approach showed superior performance in preserving relevant
information while removing noise, as demonstrated by exhibiting
the highest PSNR value (28.19 vs. 27.12 and 26.56). Finally, the
“Stacked Transfer Learning” approach had the lowest HAUS
(4.08 mm vs. 4.15mm and 4.46mm), indicating the best mitigation
of geometric distortion artifacts among the various approaches.

When examining the test set without the addition of artifacts,
the “Stacked Transfer Learning” approach achieved the lowest
pixel-wise error (MSE¼ 0.0004 vs. 0.0024 and 0.0005), indicating
the closest resemblance to the original images, as well as the high-
est PSNR (33.99 vs. 27.11 and 33.31), suggests exceptional noise
reduction compared to the other training approaches. The “single
model” structural similarity scores (SSIM¼ 0.96, MS-SSIM¼ 0.98)
and “Stacked Transfer Learning” (SSIM ¼ 0.96, MS-SSIM ¼ 0.98)
were similar. Finally, the “all in one” training approach appeared to
score worst among all measures of performance, indicating weaker
fidelity, structural preservation, and noise reduction when a model
is trained directly with all the artifacts at once.

Figure 3 illustrates a representative case of T2-weighted (Fig 3A)
and T2-weighted FLAIR images (Fig 3B) in a patient with recur-
rent glioma. The top rows reflect the ground truth images (left),
the ground truth images with the addition of synthetic EPI artifacts
(middle), and the difference between the truth and the images with

FIG 3. A representative test set case of T2-weighted (A) and T2-weighted FLAIR images (B) in a patient with recurrent glioma. The top rows
reflect the ground truth images (left), the ground truth images with the addition of synthetic EPI artifacts (middle), and the difference between
the truth and the images with synthetic artifacts (right). The bottom row highlights the ground truth images (left), the corrected images by using
the stacked transfer learning model applied to the images with synthetic artifacts (middle), and the difference between the truth and the
model-corrected images (right).

Table 2: Mean (STD) performance of the training frameworks for the synthetic artifact test set and artifact-free test set (ground
truth). MSE and HAUS, lower is better. SSIM, MS-SSIM, PSNR higher is better.

Synthetic Artifact Test Set
Model MSE SSIM MS-SSIM PSNR HAUS [mm]

All-in-one 0.0024 (6 0.0021) 0.88 (6 0.03) 0.88 (6 0.07) 27.12 (6 2.96) 4.15 (6 2.57)
Single Models 0.0023 (6 0.0015) 0.89 (6 0.0258) 0.90 (6 0.06) 26.56 (6 2.46) 4.46 (6 2.59)
Stacked Transfer Learning 0.0016 (6 0.0017) 0.92 (6 0.02) 0.92 (6 0.06) 28.10 (6 3.56) 4.08 (6 2.67)
Artifact-Free Test Set (ground truth)

All-in-one 0.0024 (6 0.0015) 0.91 (6 0.01) 0.92 (6 0.06) 27.11 (6 2.90)
Single Models 0.0005 (6 0.0003) 0.96 (6 0.00) 0.98 (6 0.02) 33.31 (6 2.43)
Stacked Transfer Learning 0.0004 (6 0.0002) 0.96 (6 0.02) 0.98 (6 0.04) 33.99 (6 1.62)
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synthetic artifacts (right). The bottom row highlights the ground
truth images (left), the corrected images using the “Stacked
Transfer Learning”model applied to the images with synthetic arti-
facts (middle), and the difference between the truth and the model-
corrected images (right), highlighting the ability effectively suppress
various artifacts while preserving important anatomic details.

When applying the model to a unique data set for clinical vali-
dation using single-shot diffusion-weighted EPI in patients with
recurrent glioblastoma (Fig 4; Supplemental Fig. 2), results
appeared to similarly demonstrate the ability to adequately correct
for obvious artifacts – particularly the commonly encountered geo-
metric distortions and signal dropout in the frontal and occipital
regions, as well as Nyquist artifacts. Line profiles through key
regions of the head with the most pronounced distortions appear
to show better alignment with anatomic landmarks between
model-corrected ADC maps and T2-weighted images, including
the edge of the brain and skull. Additionally, generated ADC maps
had notably higher SNR compared with the ADC maps with arti-
facts present. However, it is important to note that the model
appeared to exhibit some elevated blurring and reduction in image
detail in some cases, which warrants future investigation.

To generally assess the visual quality of the model-generated
ADC maps, Spearman correlation analysis was performed

between QC scores assessed by Readers
1 and 2. Results showed high correlation
in rank before (r¼0.7505, p,0.001) and
after (r¼0.7938, p,0.001) model correc-
tion (Fig 5A), as well as high rank consis-
tency between pre- and post-correction
assessments by each reader (Reader 1,
r¼0.7505, p,0.001; Reader 1, r¼0.7907,
p,0.001). The Cohen’s weighted kappa
statistic showed only slight agreement
between readers in terms of the absolute
QC score both before (k¼0.148) and af-
ter (k¼0.054) model correction as there
was a bias toward a lower QC score for
Reader 2 (Reader 1¼4.0660.94, Reader
2¼2.7760.77, P,0.0001). However, the
average QC scores for the original ADC
images were significantly lower for both
readers when compared to the scores

on the AI-“corrected” ADC images (Fig 5B; Reader 1¼3.6061.02
vs. 4.2760.73, p,0.0001; Reader 2¼ 2.5160.71 vs. 2.7860.80,
p¼0.0005). Together, these results appear to confirm a significant
improvement in image quality with the model-corrected ADC
maps compared to ADCmaps prior to correction.

Lastly, normalized ADC measurements from different tumor
regions were compared to determine whether quantitative
measurements would be significantly impacted by model-
based artifact removal (Supplemental Fig. 3). Results did not
demonstrate a significant difference in normalized ADC meas-
urements in the T2 hyperintense regions (Supplemental
Fig. 3A, p¼0.2490) or contrast enhancing tumor areas
(Supplemental Fig. 3C; p¼0.1390). A strong linear correlation
was observed between the natively acquired and model-cor-
rected ADC measurements in areas of T2 hyperintensity
(Supplemental Fig. 3B; r¼0.9500, p,0.0001) as well as within
contrast enhancing tumor regions (Supplemental Fig. 3D;
r¼0.9044, p,0.0001).

DISCUSSION
The current study utilized stacked synthetic data sets with
increasingly complex distortions to fully leverage the benefits of
transfer learning in an artifact reduction model. Importantly, the

FIG 4. Clinical validation example ADC maps acquired from single-shot diffusion-weighted EPI in a patient with recurrent glioblastoma.
Geometric distortion and N/2 Nyquist ghosting is noted on the original ADC map in the frontal lobe, distal from the site of tumor. Line profiles
represent ADC or arbitrary pixel-values along segments of interest, allowing a visual comparison between landmark locations before and after
artifact removal with respect to a T2-weighted image as a reference.

FIG 5. Comparison of diffusion MRI QC scores between 2 independent readers. A, Correlation of
QC between reader 1 and reader 2 before and after AI-correction showing high correlation
between readers. (B) Change in QC scores for reader 1 and reader 2 after AI correction. (Note:
reader scores were offset slightly for visualization purposes).
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present study illustrates a novel approach for improved image
quality using a combination (1) a physics-based method for gen-
erating an extensive data set of realistic synthesized images, and
(2) the effective use of this synthetic data to train deep learning
models using a “stacked transfer learning” approach.

Our findings indicate that adopting a physics-based method-
ology for synthesizing realistic image artifacts enhances accessi-
bility to extensive training data sets, particularly in clinical
settings where acquiring artifact-free ground truth data is not fea-
sible. Traditional data collection methods to train such models
require acquisition of extensively large training sets, each with
unique or combined image artifacts, which would be costly and
time-consuming. Furthermore, “stacked transfer learning” would
not be possible with traditional approaches for data collection, as
it would be extremely difficult and impractical to layer on each
required artifact at various levels. The ability to synthesize a range
of artifacts with varying intensities and combinations allows for
generation of extensive data sets of images that can more effi-
ciently train new and more powerful models.

It is important to point out some critical limitations of the
current study. First, the data used in the current study was from a
single institution, with the vast majority of data acquired on 3T
scanners (.99%). This can conceivably introduce biases related
to patient demographics, imaging protocols, and equipment
characteristics specific to that site. Limited demographic informa-
tion restricts access to race and ethnicity for the data set which
could also contribute to unknown biases. Extrapolating findings
to a broader population should be undertaken cautiously, recog-
nizing the potential limitations inherent in a site-specific data set.
To address this, future work should incorporate multi-center
data sets, encompassing a broader range of scanner types (e.g.,
1.5T and 7T scanners), protocols, and patient populations, includ-
ing diverse racial and ethnic groups. This would improve the gen-
eralizability of the model and allow for a more comprehensive
assessment of its performance across various clinical settings.

Additionally, the current study focused on a subset of artifacts
commonly associated with single-shot EPI, as well as a single
acceleration factor and no simultaneous multi-slice acquisition.
While the proposed concept, design, and implementation suc-
cessfully addressed identified artifacts (magnetic susceptibility,
chemical shift, N/2 Nyquist aliasing, Gibbs artifact, and Rician
noise), extending the methodology to other artifacts with differ-
ent acquisition schemes remains unexplored. Future research
could investigate additional artifacts such as coil profile artifacts,
parallel imaging artifacts, ramp sampling, eddy-current induced
geometric distortions, B1-sensitivity profile effects, metal implants,
“blinds” artifacts or missing slices, and motion. An additional limi-
tation in this work was the use of a single CT image to simulate
magnetic field inhomogeneities from tissue interfaces. Susceptibility
distributions might vary significantly with head anatomy, previous
surgical interventions and metal implants. Future work should
focus on including a more heterogeneous cohort allowing to
capture of a broader range of scenarios and patient characteris-
tics that would further validate the model’s adaptability to real-
world clinical scenarios.

It is important to acknowledge that aggressive artifact reduc-
tion can sometimes lead to unintended alterations in the images.

This is a known challenge using generative A.I., and underscores
the need for further evaluation beyond a single study. Synthetic
images generated by A.I., including those produced by our
model, should be used with caution in the clinical setting.
Importantly, the current study did not observe any pseudo-
lesions, where lesions appeared where they were not previously
present or lesions disappeared that were previously present, in
any of our validation data as confirmed by our clinical evaluators
and investigators. However, it is essential to continually evaluate
these images and to incorporate feedback from radiologists and
other medical professionals to ensure that they meet the neces-
sary criteria for the intended diagnostic use.

Finally, the evaluation of the proposed methodology was lim-
ited to a single EPI modality as a proof of concept. Extending the
testing in future work to EPI sequences, including perfusion
MRI, fMRI, and other MR image modalities, including non-pro-
ton MR, is essential for a comprehensive understanding of its
applicability across different multiple imaging contrasts.

CONCLUSIONS
The current study demonstrates feasibility of using a physics-
based method for synthesizing a large data set of images with re-
alistic EPI-based artifacts and the effectiveness of utilizing this
synthetic data set in a “stacked transfer learning” approach to
training a GAN for the purposes of artifact reduction.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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