Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeuroimaging Physics/Functional Neuroimaging/CT and MRI Technology

Individual Structural Covariance Network Predicts Long-Term Motor Improvement in Parkinson Disease with Subthalamic Nucleus Deep Brain Stimulation

Yu Diao, Hutao Xie, Yanwen Wang, Baotian Zhao, Anchao Yang and Jianguo Zhang
American Journal of Neuroradiology August 2024, 45 (8) 1106-1115; DOI: https://doi.org/10.3174/ajnr.A8245
Yu Diao
aFrom the Department of Neurosurgery (Y.D., H.X., Y.W., B.Z., A.Y., J.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yu Diao
Hutao Xie
aFrom the Department of Neurosurgery (Y.D., H.X., Y.W., B.Z., A.Y., J.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hutao Xie
Yanwen Wang
aFrom the Department of Neurosurgery (Y.D., H.X., Y.W., B.Z., A.Y., J.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Baotian Zhao
aFrom the Department of Neurosurgery (Y.D., H.X., Y.W., B.Z., A.Y., J.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Baotian Zhao
Anchao Yang
aFrom the Department of Neurosurgery (Y.D., H.X., Y.W., B.Z., A.Y., J.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Neurostimulation (A.Y., J.Z.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianguo Zhang
aFrom the Department of Neurosurgery (Y.D., H.X., Y.W., B.Z., A.Y., J.Z.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Neurostimulation (A.Y., J.Z.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jianguo Zhang
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Mosley PE,
    2. Paliwal S,
    3. Robinson K, et al
    . The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson's disease. Brain 2020;143:2235–54 doi:10.1093/brain/awaa148 pmid:32568370
    CrossRefPubMed
  2. 2.↵
    1. Hacker ML,
    2. Turchan M,
    3. Heusinkveld LE, et al
    . Deep brain stimulation in early-stage Parkinson disease: Five-year outcomes. Neurology 2020;95:e393–e401 pmid:32601120
    Abstract/FREE Full Text
  3. 3.↵
    1. Cavallieri F,
    2. Fraix V,
    3. Bove F, et al
    . Predictors of long-term outcome of subthalamic stimulation in Parkinson disease. Ann Neurol 2021;89:587–97 doi:10.1002/ana.25994 pmid:33349939
    CrossRefPubMed
  4. 4.↵
    1. Barbosa R,
    2. Guedes LC,
    3. Cattoni MB, et al
    . Long-term follow-up of subthalamic nucleus deep brain stimulation in patients with Parkinson's disease: An analysis of survival and disability milestones. Parkinsonism Relat Disord 2023;118:105921 pmid:37976978
    PubMed
  5. 5.↵
    1. Shin HW,
    2. Kim MS,
    3. Kim SR, et al
    . Long-term effects of bilateral subthalamic deep brain stimulation on postural instability and gait difficulty in patients with Parkinson's disease. J Mov Disord 2020;13:127–32 doi:10.14802/jmd.19081 pmid:32498496
    CrossRefPubMed
  6. 6.↵
    1. Rodriguez-Oroz MC,
    2. Moro E,
    3. Krack P
    . Long-term outcomes of surgical therapies for Parkinson's disease. Mov Disord 2012;27:1718–28 doi:10.1002/mds.25214 pmid:23208668
    CrossRefPubMed
  7. 7.↵
    1. Wolke R,
    2. Becktepe JS,
    3. Paschen S, et al
    . The role of levodopa challenge in predicting the outcome of subthalamic deep brain stimulation. Mov Disord Clin Pract 2023;10:1181–91 doi:10.1002/mdc3.13825 pmid:37635781
    CrossRefPubMed
  8. 8.↵
    1. Zheng Z,
    2. Yin Z,
    3. Zhang B, et al
    . levodopa challenge test predicts STN-DBS outcomes in various Parkinson's disease motor subtypes: a more accurate judgment. Neural Plast 2021;2021:4762027 pmid:34721568
    PubMed
  9. 9.↵
    1. Piboolnurak P,
    2. Lang AE,
    3. Lozano AM, et al
    . Levodopa response in long-term bilateral subthalamic stimulation for Parkinson's disease. Mov Disord 2007;22:990–97 doi:10.1002/mds.21482 pmid:17443692
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Lin W,
    2. Shi D,
    3. Wang D, et al
    . Can levodopa challenge testing predict the effect of deep brain stimulation? one-year outcomes in a Chinese cohort. Front Aging Neurosci 2021;13:764308 doi:10.3389/fnagi.2021.764308 pmid:34744699
    CrossRefPubMed
  11. 11.↵
    1. Geraedts VJ,
    2. van Vugt JPP,
    3. Marinus J, et al
    . Predicting motor outcome and quality of life after subthalamic deep brain stimulation for Parkinson's disease: the role of standard screening measures and wearable-data. J Parkinsons Dis 2023;13:575–88 doi:10.3233/JPD-225101 pmid:37182900
    CrossRefPubMed
  12. 12.↵
    1. Chu C,
    2. He N,
    3. Zeljic K, et al
    . Subthalamic and pallidal stimulation in Parkinson's disease induce distinct brain topological reconstruction. Neuroimage 2022;255:119196 doi:10.1016/j.neuroimage.2022.119196 pmid:35413446
    CrossRefPubMed
  13. 13.↵
    1. Feigin A,
    2. Kaplitt MG,
    3. Tang C, et al
    . Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson's disease. Proc Natl Acad Sci U S A 2007;104:19559–64 doi:10.1073/pnas.0706006104 pmid:18042721
    Abstract/FREE Full Text
  14. 14.↵
    1. Logothetis NK
    . What we can do and what we cannot do with fMRI. Nature 2008;453:869–78 doi:10.1038/nature06976 pmid:18548064
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Horn A,
    2. Reich M,
    3. Vorwerk J, et al
    . Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 2017;82:67–78 doi:10.1002/ana.24974 pmid:28586141
    CrossRefPubMed
  16. 16.↵
    1. Yang B,
    2. Wang X,
    3. Mo J, et al
    . The altered spontaneous neural activity in patients with Parkinson's disease and its predictive value for the motor improvement of deep brain stimulation. Neuroimage Clin 2023;38:103430 doi:10.1016/j.nicl.2023.103430 pmid:37182459
    CrossRefPubMed
  17. 17.↵
    1. Elliott ML,
    2. Knodt AR,
    3. Hariri AR
    . Striving toward translation: strategies for reliable fMRI measurement. Trends Cogn Sci 2021;25:776–87 doi:10.1016/j.tics.2021.05.008 pmid:34134933
    CrossRefPubMed
  18. 18.↵
    1. Yin Z,
    2. Bai Y,
    3. Zou L, et al
    . Balance response to levodopa predicts balance improvement after bilateral subthalamic nucleus deep brain stimulation in Parkinson's disease. NPJ Parkinsons Dis 2021;7:47 doi:10.1038/s41531-021-00192-9 pmid:34045471
    CrossRefPubMed
  19. 19.↵
    1. Gracien RM,
    2. Maiworm M,
    3. Bruche N, et al
    . How stable is quantitative MRI? - Assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs. Neuroimage 2020;207:116364 doi:10.1016/j.neuroimage.2019.116364 pmid:31740340
    CrossRefPubMed
  20. 20.↵
    1. Liu Z,
    2. Palaniyappan L,
    3. Wu X, et al
    . Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis. Mol Psychiatry 2021;26:7719–31 doi:10.1038/s41380-021-01229-4 pmid:34316005
    CrossRefPubMed
  21. 21.↵
    1. Lu L,
    2. Xu K,
    3. Shi L, et al
    . Measuring subthalamic nucleus volume of Parkinson's patients and evaluating its relationship with clinical scales at pre- and postdeep brain stimulation treatment: a magnetic resonance imaging study. Biomed Res Int 2021;2021:6646416
    CrossRefPubMed
  22. 22.↵
    1. Muthuraman M,
    2. Deuschl G,
    3. Koirala N, et al
    . Effects of DBS in parkinsonian patients depend on the structural integrity of frontal cortex. Sci Rep 2017;7:43571 doi:10.1038/srep43571 pmid:28262813
    CrossRefPubMed
  23. 23.↵
    1. Chen Y,
    2. Zhu G,
    3. Liu Y, et al
    . Predict initial subthalamic nucleus stimulation outcome in Parkinson's disease with brain morphology. CNS Neurosci Ther 2022;28:667–76 doi:10.1111/cns.13797 pmid:35049150
    CrossRefPubMed
  24. 24.↵
    1. Ping L,
    2. Sun S,
    3. Zhou C
    , DIRECT Consortium, et al. Altered topology of individual brain structural covariance networks in major depressive disorder. Psychol Med 20231–12 pmid:37698447
    PubMed
  25. 25.↵
    1. Li R,
    2. Zou T,
    3. Wang X, et al
    . Basal ganglia atrophy-associated causal structural network degeneration in Parkinson's disease. Hum Brain Mapp 2022;43:1145–56 doi:10.1002/hbm.25715 pmid:34792836
    CrossRefPubMed
  26. 26.↵
    1. Hughes AJ,
    2. Daniel SE,
    3. Kilford L, et al
    . Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181–84 doi:10.1136/jnnp.55.3.181 pmid:1564476
    Abstract/FREE Full Text
  27. 27.↵
    1. Jost ST,
    2. Kaldenbach MA,
    3. Antonini A
    , International Parkinson and Movement Disorders Society Non-Motor Parkinson Disease Study Group, et al. Levodopa dose equivalency in Parkinson's disease: updated systematic review and proposals. Mov Disord 2023;38:1236–52 doi:10.1002/mds.29410 pmid:37147135
    CrossRefPubMed
  28. 28.↵
    1. Goetz CG,
    2. Tilley BC,
    3. Shaftman SR
    , Movement Disorder Society UPDRS Revision Task Force, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008;23:2129–70 doi:10.1002/mds.22340 pmid:19025984
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Schrag A,
    2. Sampaio C,
    3. Counsell N, et al
    . Minimal clinically important change on the unified Parkinson's disease rating scale. Mov Disord 2006;21:1200–07 doi:10.1002/mds.20914 pmid:16673410
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Liu X,
    2. Wang Y,
    3. Ji H, et al
    . Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res 2016;44:e164 doi:10.1093/nar/gkw772 pmid:27596597
    CrossRefPubMed
  31. 31.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M, et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41 doi:10.1006/nimg.2002.1132 pmid:12377157
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Pedregosa F,
    2. Varoquaux G,
    3. Gramfort A, et al
    . Scikit-learn: machine learning in Python. Journal of Machine Learning Research 2011;12:2825–30
  33. 33.↵
    1. Zaidel A,
    2. Bergman H,
    3. Ritov Y, et al
    . Levodopa and subthalamic deep brain stimulation responses are not congruent. Mov Disord 2010;25:2379–86 doi:10.1002/mds.23294 pmid:20824733
    CrossRefPubMed
  34. 34.↵
    1. Dembek TA,
    2. Roediger J,
    3. Horn A, et al
    . Probabilistic sweet spots predict motor outcome for deep brain stimulation in Parkinson disease. Ann Neurol 2019;86:527–38 doi:10.1002/ana.25567 pmid:31376171
    CrossRefPubMed
  35. 35.↵
    1. Fasano A,
    2. Romito LM,
    3. Daniele A, et al
    . Motor and cognitive outcome in patients with Parkinson's disease 8 years after subthalamic implants. Brain 2010;133:2664–76 doi:10.1093/brain/awq221 pmid:20802207
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Lozano AM,
    2. Lipsman N,
    3. Bergman H, et al
    . Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 2019;15:148–60 doi:10.1038/s41582-018-0128-2 pmid:30683913
    CrossRefPubMed
  37. 37.↵
    1. Shang S,
    2. Zhang H,
    3. Feng Y, et al
    . Region-specific neurovascular decoupling associated with cognitive decline in Parkinson's disease. Front Aging Neurosci 2021;13:770528 doi:10.3389/fnagi.2021.770528 pmid:34867297
    CrossRefPubMed
  38. 38.↵
    1. Deng X,
    2. Liu Z,
    3. Kang Q, et al
    . Cortical structural connectivity alterations and potential pathogenesis in mid-stage sporadic Parkinson's disease. Front Aging Neurosci 2021;13:650371 doi:10.3389/fnagi.2021.650371 pmid:34135748
    CrossRefPubMed
  39. 39.↵
    1. Yan S,
    2. Lu J,
    3. Li Y, et al
    . Impaired topological properties of cortical morphological brain networks correlate with motor symptoms in Parkinson's disease. J Neuroradiol 2023 doi:10.1016/j.neurad.2023.09.007
    CrossRef
  40. 40.↵
    1. Hacker ML,
    2. Rajamani N,
    3. Neudorfer C, et al
    . Connectivity profile for subthalamic nucleus deep brain stimulation in early stage Parkinson disease. Ann Neurol 2023;94:271–84 pmid:37177857
    CrossRefPubMed
  41. 41.↵
    1. David FJ,
    2. Goelz LC,
    3. Tangonan RZ, et al
    . Bilateral deep brain stimulation of the subthalamic nucleus increases pointing error during memory-guided sequential reaching. Exp Brain Res 2018;236:1053–65 doi:10.1007/s00221-018-5197-3 pmid:29427240
    CrossRefPubMed
  42. 42.↵
    1. Neumann WJ,
    2. Schroll H,
    3. de Almeida Marcelino AL, et al
    . Functional segregation of basal ganglia pathways in Parkinson's disease. Brain 2018;141:2655–69 pmid:30084974
    CrossRefPubMed
  43. 43.↵
    1. Irmady K,
    2. Hale CR,
    3. Qadri R, et al
    . Blood transcriptomic signatures associated with molecular changes in the brain and clinical outcomes in Parkinson's disease. Nat Commun 2023;14:3956 doi:10.1038/s41467-023-39652-6 pmid:37407548
    CrossRefPubMed
  44. 44.↵
    1. Castrioto A,
    2. Lozano AM,
    3. Poon YY, et al
    . Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol 2011;68:1550–56 doi:10.1001/archneurol.2011.182 pmid:21825213
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Rabel C,
    2. Le Goff F,
    3. Lefaucheur R, et al
    . Subjective perceived motor improvement after acute levodopa challenge in Parkinson's disease. J Parkinsons Dis 2016;6:779–85 doi:10.3233/JPD-160906 pmid:27662330
    Abstract/FREE Full Text
  46. 46.↵
    1. Jahanshahi M,
    2. Leimbach F,
    3. Rawji V
    . Short and long-term cognitive effects of subthalamic deep brain stimulation in Parkinson's disease and identification of relevant factors. J Parkinsons Dis 2022;12:2191–209 doi:10.3233/JPD-223446 pmid:36155529
    Abstract/FREE Full Text
  47. 47.↵
    1. Guimaraes TG,
    2. Cury RG
    . Troubleshooting gait problems in Parkinson's disease patients with subthalamic nucleus deep brain stimulation. J Parkinsons Dis 2022;12:737–41 doi:10.3233/JPD-212771 pmid:34924400
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (8)
American Journal of Neuroradiology
Vol. 45, Issue 8
1 Aug 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Individual Structural Covariance Network Predicts Long-Term Motor Improvement in Parkinson Disease with Subthalamic Nucleus Deep Brain Stimulation
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Yu Diao, Hutao Xie, Yanwen Wang, Baotian Zhao, Anchao Yang, Jianguo Zhang
Individual Structural Covariance Network Predicts Long-Term Motor Improvement in Parkinson Disease with Subthalamic Nucleus Deep Brain Stimulation
American Journal of Neuroradiology Aug 2024, 45 (8) 1106-1115; DOI: 10.3174/ajnr.A8245

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Structural Covariance Network in Parkinson Disease
Yu Diao, Hutao Xie, Yanwen Wang, Baotian Zhao, Anchao Yang, Jianguo Zhang
American Journal of Neuroradiology Aug 2024, 45 (8) 1106-1115; DOI: 10.3174/ajnr.A8245
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Comprehensive Review of IA Imaging Modalities
  • Synthetic MRI based on 3D-QALAS MR Quantification
  • Delta wave MRI
Show more Neuroimaging Physics/Functional Neuroimaging/CT and MRI Technology

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire