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ORIGINAL RESEARCH
NEUROIMAGING PHYSICS/FUNCTIONAL NEUROIMAGING/CT AND MRI TECHNOLOGY

Individual Structural Covariance Network Predicts Long-
TermMotor Improvement in Parkinson Disease with

Subthalamic Nucleus Deep Brain Stimulation
Yu Diao, Hutao Xie, Yanwen Wang, Baotian Zhao, Anchao Yang, and Jianguo Zhang

ABSTRACT

BACKGROUND AND PURPOSE: The efficacy of long-term chronic subthalamic nucleus deep brain stimulation (STN-DBS) in treating
Parkinson disease (PD) exhibits substantial variability among individuals. The preoperative identification of suitable deep brain stimu-
lation (DBS) candidates through predictive means becomes crucial. Our study aims to investigate the predictive value of character-
izing individualized structural covariance networks for long-term efficacy of DBS, offering patients a precise and cost-effective
preoperative screening tool.

MATERIALS AND METHODS:We included 138 patients with PD and 40 healthy controls. We developed individualized structural co-
variance networks from T1-weighted images utilizing network template perturbation, and computed the networks’ topological char-
acteristics. Patients were categorized according to their long-term motor improvement following STN-DBS. Intergroup analyses
were conducted on individual network edges and topological indices, alongside correlation analyses with long-term outcomes for
the entire patient cohort. Finally, machine learning algorithms were employed for regression and classification to predict post-DBS
motor improvement.

RESULTS: Among the patients with PD, 6 edges (left middle frontal and left caudate nucleus, right olfactory and right insula, left supe-
rior medial frontal gyrus and right insula, right middle frontal and left paracentral lobule, right middle frontal and cerebellum, left
lobule VIIb of the cerebellum and the vermis of the cerebellum) exhibited significant results in intergroup comparisons and correlation
analyses. Increased degree centrality and local efficiency of the cerebellum, parahippocampal gyrus, and postcentral gyrus were associ-
ated with DBS improvement. A regression model constructed from these 6 edges revealed a significant correlation between predicted
and observed changes in the unified PD rating scale (R¼ 0.671, P, .001) and receiver operating characteristic analysis demonstrated an
area under the curve of 0.802, effectively distinguishing between patients with good and moderate improvement post-DBS.

CONCLUSIONS: Our findings reveal the link between individual structural covariance network fingerprints in patients with PD and
long-term motor outcome following STN-DBS. Additionally, binary and continuous cerebellum–basal ganglia–frontal structural covariance
network edges have emerged as potential predictive biomarkers for DBS motor outcome.

ABBREVIATIONS: AUC ¼ area under the curve; Berg ¼ Berg Balance Scale; DBS ¼ deep brain stimulation; FDR ¼ false discovery rate; FOG-Q ¼ Freezing of
Gait Questionnaire; GIG ¼ good improvement group; HAMA ¼ Hamilton Anxiety Rating Scale; HAMD ¼ Hamilton Depression Rating Scale; HC ¼ health con-
trol; ISCN ¼ individualized structural covariance networks; IDSCN ¼ individual differential structural covariance network; LCT ¼ levodopa challenge test; MDS-
UPDRS ¼ Movement Disorder Society–sponsored Unified Parkinson’s Disease Rating Scale; Med-OFF ¼ off-medication; Med-ON ¼ on-medication; MIG ¼
moderate improvement group; ML ¼ machine learning; MoCA ¼ Montreal Cognitive Assessment; MSE ¼ mean squared error; NTP ¼ network template pertur-
bation; PCL ¼ paracentral lobule; PD ¼ Parkinson disease; ROC ¼ receiver operating characteristic; STN-DBS ¼ deep brain stimulation of the subthalmic nu-
cleus; Stim-ON ¼ stimulation-on; SCN ¼ structural covariance network; TIV ¼ total intracranial volume

Deep brain stimulation of the subthalamic nucleus (STN-
DBS) is an effective therapy for improving long-term motor

symptoms in patients with Parkinson disease (PD).1,2 However,
the long-term effectiveness of deep brain stimulation (DBS) relies

on preoperative patient selection, precise targeting during im-
plantation, postoperative programming, and ongoing medical
management.3 Long-term STN-DBS can lead to motor and cog-
nitive complications in some patients,4 and there is considerable
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individual variation in the postoperative improvement of motor
symptoms.5,6 Therefore, identifying effective predictive factors
preoperatively is crucial for patient selection.

In many DBS centers, the levodopa challenge test (LCT)
serves as a critical predictor for evaluating the motor prognosis of
DBS.7,8 While LCT proves effective in identifying patients with a
nonresponsive reaction to levodopa, its predictive accuracy for
postoperative long-term motor outcomes exhibits significant var-
iability and lacks precision.7-10 Additionally, the emotional bur-
den induced by the off-medication (Med-OFF) state and the
hospital environment can lead to inaccuracies in LCT results.11

Existing research suggests that the modulation of motor symp-
toms in patients with PD through STN-DBS is based on the regu-
lation of large-scale brain networks.12,13 Due to the dynamic time
characteristics of fMRI,14 individual brain networks constructed
based on fMRI are increasingly employed for postoperative pre-
diction.15,16 However, noise sources, such as physiologic factors
(eg, motion, respiration) and miscellaneous nonphysiologic fac-
tors (eg, scanner drift), coupled with the duration of the scans
themselves, contribute to significant variability in fMRI.17

Additionally, economic constraints associated with fMRI also limit
its applicability and value. All of these factors render it unsuitable
for some DBS centers. Given these challenges, there is a pressing
need for a more objective and stable postoperative prediction
method. The advantages of T1 scans include shorter scan times,
minimal sensitivity to physiologic influences, and controlled error
within 2% in repeated scans on the same equipment, demonstrat-
ing the stability of its scan results.18,19 T1 scans are a routine
sequence in many centers, offering economic advantages as well.
The latest network template perturbation (NTP) methods20 have
facilitated the construction of structural covariance networks. The
predictive potential of brain networks for long-term motor out-
comes, investigated in fMRI research, may also be attainable by
depicting brain networks by using structural covariance.

In previous studies, the relationship between T1-based brain
morphometry and long-term therapeutic outcomes has been
established.21 Gray matter atrophy in the frontal lobe22 and pre-
central cortex23 have also shown effective predictive relationships
with long-term motor response. Additionally, in patients with
PD, damage to the structural covariance network (SCN) from the

basal ganglia to regions such as the sensorimotor cortex has been
observed based on T1-weighted images at the group level.24,25

However, group-based SCNs often overlook individual differen-
ces and fail to uncover the relationship between brain structural
networks arising from individual variability and improvements
in clinical symptoms. In this study, we employed NTP, based on
T1, to construct individualized structural covariance networks
(ISCN) and investigate the predictive value of ISCN for long-
term motor improvement following STN-DBS.20 This approach
allowed us to explore the heterogeneity of structural covariance
networks at the individual level.

In this study, the network edge selection was determined
based on correlations with long-term prognosis and between-
group comparisons. Graph theory analysis was utilized to identify
nodes in the network crucial for long-term outcome. Ultimately,
machine learning (ML) techniques were employed to predict
the extent of motor improvement in patients with PD after
STN-DBS.

MATERIALS AND METHODS
Study Design and Participants
The study retrospectively included patients from 2016 to 2022 at
Beijing Tiantan Hospital, Capital Medical University, China.
Inclusion criteria were: 1) diagnosed with idiopathic PD,26 2)
underwent bilateral STN-DBS, 3) completed motor and nonmo-
tor assessments at baseline and at least 1 year postsurgery, 4) met
quality control standards on neuroimaging examination. Age-
matched health controls (HCs) were individuals aged between
40–80 years without any neurologic disorders. Ultimately, a total
of 138 patients with PD were retrospectively included, with 40
HCs. Baseline information is summarized in Table 1.

Clinical Examinations
Patients underwent detailed clinical assessments included
Movement Disorder Society–sponsored Unified Parkinson's
Disease Rating Scale (MDS-UPDRS), especially Part III of the
MDS-UPDRS (MDS-UPDRS-III), Berg Balance Scale (Berg),
Freezing of Gait Questionnaire (FOG-Q), Montreal Cognitive
Assessment (MoCA), Hamilton Anxiety Rating Scale (HAMA)
and Hamilton Depression Rating Scale (HAMD). These clinical

SUMMARY

PREVIOUS LITERATURE: The effectiveness of long-term STN-DBS in treating PD varies significantly among individuals. The preop-
erative identification of suitable DBS candidates through predictive methods becomes imperative. The clinically utilized dopa-
mine challenge test demonstrates limited efficacy in predicting long-term outcomes. With the recognition of aberrant
characteristics in the whole-brain networks in PD, individual brain networks constructed based on fMRI are used for postopera-
tive predictions. However, the extended scan duration, notable variability, and economic constraints associated with fMRI
restrict its applicability and practicality. Therefore, there is a clinical need for predictive methods that exhibit both robust effi-
cacy and economic feasibility.

KEY FINDINGS: Binary and continuous structural covariance network edges linking the cerebellum, basal ganglia, and frontal
regions have emerged as potential predictive biomarkers for the motor outcome of DBS.

KNOWLEDGE ADVANCEMENT: This study contributes to providing an economically viable and objectively convenient predictive
tool for identifying suitable candidates for DBS.
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assessments were conducted by 2 movement disorder experts
within the first 2 weeks preceding DBS, during both the Med-
OFF and on-medication (Med-ON) states. The Med-OFF state
was defined as abstaining from antiparkinsonian drugs for at
least 12 hours, while the Med-ON state was defined as having
taken antiparkinsonian drugs within the previous hour. The levo-
dopa equivalent daily dose for each patient's antiparkinsonian
drugs is detailed in Table 1.27 Follow-up assessments were con-
ducted at 1–3 years postsurgery in both stimulation-on (Stim-
ON)/Med-ON and Stim-ON/Med-OFF states. The specific
surgical procedure and follow-up protocol can be found in
the Online Supplemental Data.

The impact of DBS on clinical motor improvement was quan-
tified as a percentage improvement on the MDS-UPDRS-III.
MDS-UPDRS-III consists of 33 scores derived from 18 items,
with each item scored on a scale of 0 to 4. A score of 0 indicates
normalcy, while a score of 4 signifies severe impairment.28 The
improvement percentage of DBS was further used to categorize
patients into a good improvement group (GIG) and a moderate
improvement group (MIG). The formula for calculating the
improvement percentage is as follows:

ðpreoperative MDS-UPDRS-IIIðMed OFFÞ
� postoperative MDS-UPDRS-IIIðMed OFF=Stim ONÞ=

preoperative MDS-UPDRS-IIIðMed OFFÞÞ:

Previous studies have indicated that patients undergoing
STN-DBS with an improvement rate exceeding 30% are consid-
ered to exhibit a beneficial response to stimulation.11 Therefore,
we defined the MIG as patients with an improvement rate of 30%
or less. Additionally, the confidence interval for the overall
maximum improvement in MDS-UPDRS-III ranges from 69.8
to 45.8.29 Therefore, patients with an improvement rate of 70%
or higher were categorized as the GIG. In the group analysis,
only patients with DBS improvement rates below 30% and
above 70% were included. This was done to enhance sensitivity
in the analysis. Detailed information on patient grouping based
on DBS improvement rates is shown in Fig 2 and the Online
Supplemental Data.

All postoperative images of the
patients were reviewed to confirm the
absence of electrode displacement.
The final follow-up stimulation parame-
ters for both patient groups were com-
parable (Online Supplemental Data ).

Individual Differential Structural
Covariance Network Measures
As the conventional group-level SCN
analysis tends to lose individualized net-
work information, we adopted a recently
established method, NTP, as outlined by
Liu et al,20 to construct individual-spe-
cific SCNs. Details of T1 data acquisition
and preprocessing can be found in the
Online Supplemental Data.

Specifically, we followed the steps
depicted in Fig 1. Initially, a reference SCN was constructed within
the HC group (n¼ 40). This network was generated by calculating
the partial Pearson correlation coefficient between gray matter vol-
umes of each pair of brain regions, while considering total intracra-
nial volume (TIV) as a covariate, and denoted this value as Pearson
correlation coefficient for the nth patient (PCCn). Subsequently, ev-
ery patient was introduced into the HC group, resulting in n1 1
subjects (n controls and 1 patient), and a new structural covariance
network termed the perturbed network PCCn1 1 was constructed.
Calculation of the difference between the perturbed network and
the reference network, DPCCn ¼ PCCn1 1 – PCCn, followed.
Lastly, given that DPCCn exhibited a novel symmetrical distribu-
tion known as the “volcano distribution,”30 we computed the Z
score for DPCCn by using a Z-test as follows:

Z ¼ DPCCn
1�PCC2

n
n�1

The individual differential structural covariance network
(IDSCN) for every patient was subsequently constructed, where
the weight of each edge was determined by the Z-scores obtained
from the Z-test. Moreover, we calculated the P value for each
edge in the IDSCN for every patient based on the Z score. Finally,
we identified edges in each patient's IDSCN that significantly
deviated from the reference network, applying Bonferroni correc-
tion. The edges within the IDSCN convey how the inclusion of
an additional patient altered the covariance of gray-matter vol-
ume pairs for specific brain regions compared with the reference
group. Ultimately, for each patient, we constructed IDSCN con-
sisting of 12,090 edges, based on 156 brain regions defined by the
automated anatomical labelling atlas 3 (AAL3) (Online Supplemental
Data). The edges in the IDSCN represent how the covariance
between 2 brain regions in an individual patient deviates from
the reference structural covariance network observed in HCs.

Network Analysis
We selected a range of sparsity thresholds (K¼ 0.14 � 0.5, with
an increment of 0.01) to binarize the IDSCN and computed
global and nodal network topological properties. Global metrics
(small-world attributes and global efficiency) and node-level

Table 1: Baseline and follow-up
Preoperative

Mean6SD (range)
Postoperative

Mean6SD (range) P
Sex (M/F) 73/65 73/65 –

Age (years) 62.08 6 8.52 (35–82) 62.08 6 8.52 (35–82) –

Durations (years) 11.72 6 4.73 (5–29) 11.72 6 4.73 (5–29) –

LEDD (mg) 773.37 6 351.27 (0–1735.65) 555.66 6 291.21 (0–1580) ,.001
MDS-UPDRS-III (med off) 49.86 6 16.00 (18–97) 24.61 6 13.49 (3–65) ,.001
MDS-UPDRS-III-tremor
(med off)

10.95 6 7.68 (0–33) 3.33 6 4.35 (0–22) ,.001

MDS-UPDRS-III-rigidity
(med off)

8.78 6 3.67 (2–23) 2.75 6 2.92 (0–12) ,.001

FOGQ 11.58 6 8.22 (0–24) 7.54 6 7.47 (0–24) ,.001
Berg 37.62 6 13.36 (1–56) 45.84 6 10.21 (2–56) ,.001
MoCA 21.82 6 4.22 (10–30) 21.90 6 4.39 (10–30) .564
HAMA 18.41 6 9.53 (2–51) 12.31 6 8.57 (0–44) ,.001
HAMD 18.25 6 9.18 (1–58) 13.85 6 10.15 (0–55) ,.001

Note:—Outcome changes from baseline to follow-up of each group were tested by using Wilcoxon signed-rank
tests. LEDD indicates levodopa equivalent dose.
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metrics (degree centrality, local efficiency) were calculated by
using the Graph Theoretical Network Analysis (GRETNA) soft-
ware package.31 Definition of graph theory metrics can be found
in the Online Supplemental Data.

For each sparsity threshold, network metrics were calculated,
and quantitative analysis of graph theoretical metrics was performed
by computing the area under the curve (AUC) within the entire
sparsity range.

Patients Setting and Multilayer
Perceptron Classification
We selected the top 5% of edges based
on their Z-scores for subsequent analy-
sis.20 This approach was employed to
ensure that such differences would not
be confounded by an excessive number
of nodes and edges in further intergroup
analysis and predictive model construc-
tion. First, we assessed whether there
existed group-level differences in net-
work properties, which could serve as
indicators of long-term prognosis. We
divided the data set into training/valida-
tion 1) and testing 2) sets in a 7.5:2.5 ra-
tio. Within a set, we ranked the edges
based on their correlation with the DBS
improvement and considered the abso-
lute values. Additionally, covariates
such as age, sex, TIV, and MoCA scores
were taken into account. We selected
the top 1% of the correlated edges
from a set, resulting in 6 edges (n¼ 6).
Subsequently, we conducted group-wise
comparisons between these 6 edges in
the overall groups.

Next, we employed a multilayer
perceptron classifier (neural network)
with default parameters from scikit-
learn (https://scikit-learn.org/stable/)
on the top 1% correlated edges in a
set.32 This evaluation aimed to assess
the model's ability to differentiate the
responsiveness to STN-DBS based on
combinations of network edges. We
performed 5-fold cross-validation on a
set to test the model's performance.
Finally, the model was evaluated on
testing set. This involved generating re-
ceiver operating characteristic (ROC)
curves on testing set, plotting the true-
positive rate against the false-positive
rate. The performance of the tested
model was quantified by calculating the
AUC of the average ROC curve.

STN-DBS Outcome Prediction
Using XGBoost
We utilized XGBoost (https://xgboost.

readthedocs.io/en/stable/) to investigate whether preoperative
network fingerprints can predict the long-term DBS efficacy for
all patients. Initially, we divided the data set into training/valida-
tion and testing sets in a 75%:25% ratio, followed by feature selec-
tion within the training/validation set where we chose the top 1%
of edges. Subsequently, data standardization was performed.
Through grid search, we determined the optimal hyperparameter
combination for the XGBoost regression model, including the

FIG 1. Schematic outline of the study. A, Gray matter volumes were computed by using the
CAT12 toolbox, and gray matter volumes were extracted based on the AAL3 atlas for all HC and
patients with PD. B, Individual structural covariance network computation process for patients.
PCC indicates Pearson correlation coefficient.
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number of base learners (n_estimators) and the weight shrinkage
of each base learner (learning_rate). During the hyperparameter
search, we experimented with different values to find the best
combination. For n_estimators, we explored a range from 10 to
200, while for learning_rate, we explored a range from 0.01 to 0.1.

Following this, we trained the XGBoost regression model on
the training data set by using the best hyperparameter combina-
tion and evaluated its performance through 5-fold cross-valida-
tion on the training/validation data set to assess hyperparameter
performance. Subsequently, we assessed the model's perform-
ance by predicting long-term DBS improvement on the testing
data set. To compute feature importance, we utilized the built-in
feature_importances attribute of the XGBoost library, providing
the relative importance of each feature in predicting the model.
Evaluation metrics included the correlation coefficient between
predicted and actual values, offering insights into the model's
predictive accuracy. Additionally, we computed the mean squared
error (MSE) as a quantifiable measure of overall prediction error.

Statistical Analyses
The comparison of changes in outcomes from baseline to long-
term follow-up for all patients, which did not conform to a nor-
mal distribution, was assessed by using Wilcoxon signed-rank
tests. Following grouping into GIG, MIG, and HC, an analysis of
variance was employed to examine age and sex differences among
the groups. Comparisons between the GIG and MIG groups
underwent a normality test, and if the data followed a normal dis-
tribution, a 2-sample t test was applied. Non-normally distributed
data were analyzed by using the Mann-Whitney U test. All results
are presented as mean6 standard deviation, and statistical signif-
icance was defined as P, .05.

Intergroup differences in gray matter network connectivity
were evaluated by using ANCOVA tests, with age, sex, TIV, and
MoCA scores as covariates. Multiple comparisons were corrected
by using the false discovery rate (FDR), and FDR-adjusted
P-values (FDR p) below .05 were considered statistically sig-
nificant. The correlation between gray matter volume net-
work edges and long-term improvement in DBS was assessed
by using partial correlation analysis with age, sex, TIV, and
MoCA scores as covariates.

RESULTS
Clinical Characteristics
40 HCs and 138 patients with PD with complete long-term fol-
low-up assessments were screened for inclusion. The median fol-
low-up time was 3 years (confidence interval 2.78–3.11). The
average age of patients with PD was 62.08 6 8.52 years, with an
average disease duration of 11.726 4.73 years.

Patients with PD exhibited a significant reduction in MDS-
UPDRS-III scores, decreasing from an average of 49.86 to 24.61
following long-term STN-DBS (P, .001). Furthermore, tremor
and rigidity scores showed significant improvement (P, .001).
Other results can be found in Table 1.

As indicated in the Online Supplemental Data, there were
no significant differences observed among the GIG, MIG, and
HC groups in terms of age (P¼ .768) and sex (P¼ .327).
Additionally, there were no significant differences between the
2 patient groups in terms of MDS-UPDRS improvement rates
during preoperative levodopa responsiveness testing (P¼ .854)
and disease duration (P¼ .452). The long-term therapeutic
effects on both motor and nonmotor symptoms for the 2 patient
groups are presented in Fig 2. Patients in the GIG who exhibited

FIG 2. Clinical Improvement: A, Differences in preoperative and long-term postoperative scores for motor and nonmotor scales in patients
with DBS improvement rates in the GIG and MIG. Paired t-tests were conducted for data that passed the normality test, while the Wilcoxon
signed-rank test was used for data that did not meet the normality assumption. B, Comparison of the improvement rates in motor and nonmo-
tor symptoms between the GIG and MIG. For normally distributed data, a two-sample t test was employed, whereas the Wilcoxon rank-sum
test was used for data that did not meet the normality assumption.
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significant improvement in MDS-UPDRS-III scores also dem-
onstrated more pronounced improvements in HAMA, Berg,
and FOG-Q.

Preoperative Gray Matter and Network Fingerprints
The volume of gray matter did not exhibit significant differences
between the 2 groups. In comparison to the GIG group, the MIG
group showed significantly increased connectivity Z-scores for
the connection between the left middle frontal gyrus and the left
caudate nucleus (FDR P¼ .013), the right olfactory cortex and
the right insula (FDR P¼ .020), the left superior medial frontal
gyrus and right insula (FDR P¼ .020), the right superior frontal
gyrus and the left paracentral lobule (FDR P¼ .009), the right
middle frontal gyrus and the right Crus II of the cerebellum
(FDR P¼ .009), and the left lobule VIIb of the cerebellum and
the vermis of the cerebellum (FDR P¼ .009). Detailed results are
shown in Fig 3.

Postoperative images of both patient groups were examined,
and no electrode displacement was observed. No significant dif-
ferences in stimulation parameters were found between the 2
groups (Online Supplemental Data). The 6 edges demonstrated
good predictive capabilities for long-term efficacy, achieving a
maximum AUC of 0.802 when employing the multilayer per-
ceptron classifier (Fig 3B).

Relationship of Network Topologies and DBS Outcomes
We found that global properties showed no significant correla-
tion with long-term DBS outcomes. However, degree centrality
and local efficiency exhibited significant correlations with long-
term DBS prognosis. The degree centrality of the right middle
cingulate cortex (FDR P¼ .015), left parahippocampal gyrus
(FDR P¼ .025), right postcentral gyrus (FDR P¼ .034), and ver-
mis 4–5 (FDR P¼ .011) demonstrated a positive correlation with

long-term DBS improvement. Additionally, among the local effi-
ciency, the left parahippocampal gyrus (P¼ .048), right parahip-
pocampal gyrus (P¼ .040), right postcentral gyrus (P¼ .024), left
supramarginal gyrus (P¼ .030), and left lobule 3 of the cerebel-
lum (P¼ .033) exhibited positive correlations with long-term
prognosis. Detailed results are presented in Fig 4, and the Online
Supplemental Data.

Predictors of STN-DBS Responsiveness
When age, sex, and TIV were considered as covariates, the corre-
lations between the top 1% ranked network edges and DBS
improvement rates are depicted in Fig 5. When testing the pre-
dictive performance of gray matter volume network fingerprints
for long-term efficacy by using XGBoost in the test data set, the
correlation between actual values and predicted values was 0.671,
with an MSE of 0.055, shown in Fig 5B. The most significant con-
tribution is represented by the edge of the left superior medial
frontal gyrus and right insula (0.428).

DISCUSSION
This study investigated the impact of STN-DBS on long-term
motor improvement in patients with PD. The observation
revealed that patients with more favorable DBS improvement dis-
played IDSCN characteristics and network topological attributes
that closely resembled those of healthy individuals. Additionally,
potential outcome predictors were examined, revealing that
IDSCN fingerprints could predict the long-term improvement
outcomes of DBS.

The absence of a significant difference in preoperative levo-
dopa responsiveness between the GIG and MIG groups validates
previous findings that levodopa responsiveness alone is not a reli-
able predictor of long-term DBS outcomes.7,33 We did not
observe significant differences between the 2 patient groups in

FIG 3. Intergroup differences in edges and prediction, A, Comparison of intergroup differences in edges between the GIG (blue) and MIG (red)
patient groups for edges that are correlated with DBS improvement rate and ranked in the top 1%. Age, sex, TIV, and MoCA were included as
covariates. After FDR correction, significant intergroup differences are found in all 6 edges. B, Prediction of long-term improvement groups in
patients using 6 edge features.
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terms of stimulation parameters, despite them being recognized
as important determinants of long-term postoperative efficacy.34

During the chronic DBS phase following multiple programming
adjustments, suboptimal outcomes were still evident in some
late-stage patients with PD.35 This underscores the substantial
challenge of accurately selecting appropriate candidates for DBS
therapy.36 Intriguingly, we did not detect differences in gray mat-
ter volume within individual brain regions between the 2 patient
groups; rather, differences were observed exclusively within the
gray matter network. This suggests that long-term efficacy in
these patients may be more influenced by network characteristics
rather than structural abnormalities within isolated brain regions.

The correlation analysis between the topological properties
and long-term clinical outcomes revealed that the parahippo-
campal area, postcentral gyrus, and supramarginal gyrus, as well
as the cerebellum, exhibited nodal local efficiency and degree
centrality positively correlated with improved long-term out-
comes. These regions are implicated in spatial cognition and
motor coordination,37 with previous cortical structural studies
reporting atrophy in these areas among patients with PD.38

While we did not validate our findings with an external data set,
our results align with previous research, particularly in the com-
parison of PD to HC. Patients with PD exhibit a disrupted topo-
logical organization of cortical morphologic networks with a
significant decline in local efficiency.39 Our results suggest a net-
work with greater structural integration and reduced isolation
might be more susceptible to modulation by DBS. This observa-
tion aligns with previous research findings that indicate DBS
exerts widespread regulatory effects on functional connectivity
within cortical regions.15

Notably, the abnormal motor-cognitive gray matter network
fingerprint identified in this study may serve as one of the key
explanations for the observed long-term efficacy disparities.
These network aberrations primarily stem from reconfigurations
within the motor-cognitive network, such as alterations between
the frontal cortex and cerebellum, the caudate nucleus, as well as
the frontal cortex and the paracentral lobule (PCL). The role of
frontal lobe function and structural abnormalities in influencing
the long-termmotor efficacy of DBS stimulation has been elucidated

in patients with PD.3,22,40 The cerebellum–basal ganglia–frontal
network aberrations play a pivotal role in the motor coordina-
tion and control deficits observed in patients with PD.41 The
frontal cortical function may deteriorate in response to high-
frequency STN-DBS stimulation, exacerbating patients' motor
coordination and cognitive abilities.42 Our research findings
indicate that structural covariation connections between the cere-
bellum, frontal cortex, and caudate nucleus have predictive value
for the motor outcomes of DBS, providing evidence for the neces-
sity of higher-level cognitive network control in motor coordina-
tion. Indeed, as demonstrated by some studies, patients with PD
with more severe caudate nucleus damage43 and lower frontal
lobe scores3 tend to exhibit poorer long-term motor prognosis.

To date, despite an abundance of studies elucidating potential
determinants of long-term outcomes following DBS, most inves-
tigations have centered around preoperative assessments, such as
gait scores,44 postural stability,35 and frontal scores.3 However,
these scales require substantial time and personnel, and their sus-
ceptibility to the vagaries of subjective assessments by clinicians
and the influence of patients' anxious states in the clinical set-
ting.45 In contrast, the motor-cognitive gray matter network fin-
gerprint remains impervious to emotional factors and variations
in the expertise of clinicians. In a broader context, the character-
istics of the preoperative motor-cognitive gray matter network
fingerprint may be indicative of specific cerebral behavior pat-
terns in patients with PD.

This study has several limitations, including the fact that our
evaluation was focused on overall long-term motor improvement,
and we did not assess issues such as posture, gait, and articulation
disturbances following long-term stimulation.46,47 It is also restricted
by its retrospective, single-center design, meaning we only have MR
imaging from our center. This limitation makes it difficult for us to
validate our findings across multiple centers or use different types of
scanning devices. Additionally, conducting repeated scans on
patients by using the same device to confirm the stability of the
results is also challenging due to the retrospective nature of this
study. Finally, due to limitations in sample size, we were unable to
conduct comparisons between subtypes, and the grouping method
employed was somewhat broad to enhance statistical sensitivity.

FIG 4. The relationship between graph theory metrics and long-term treatment outcomes. Red spherical nodes represent brain regions with P-
values corrected for false discovery rate below .05. A, Degree centrality of nodes that correlated with long-term motor prognosis. B, Local effi-
ciency of nodes that correlated with long-term motor prognosis.
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CONCLUSIONS
Our findings suggest a potential correlation between individual
structural covariance network fingerprints in patients with PD
and long-term motor outcomes following STN-DBS. However, it
is important to interpret these results cautiously, as further vali-
dation and larger-scale multicenter studies are needed to confirm
the robustness and generalizability of this observed association.
The integrity of network topology, along with disruptions in net-
work separations, is closely intertwined with long-term motor
prognosis. Furthermore, we have identified that continuous and
binary structural covariation network connections between the
cerebellum, basal ganglia, frontal cortex, and PCL can predict the
motor improvement associated with STN-DBS at the individual
patient level. The weighted T1 measure, apart from serving as a

necessary tool for preoperative localization, holds promise as a
valuable biomarker for preoperative assessment of DBS candi-
dates based on their individual structural covariation network
fingerprints.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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