Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticlePediatric Neuroimaging
Open Access

Development of Gestational Age–Based Fetal Brain and Intracranial Volume Reference Norms Using Deep Learning

C.B.N. Tran, P. Nedelec, D.A. Weiss, J.D. Rudie, L. Kini, L.P. Sugrue, O.A. Glenn, C.P. Hess and A.M. Rauschecker
American Journal of Neuroradiology January 2023, 44 (1) 82-90; DOI: https://doi.org/10.3174/ajnr.A7747
C.B.N. Tran
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.B.N. Tran
P. Nedelec
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Nedelec
D.A. Weiss
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.A. Weiss
J.D. Rudie
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.D. Rudie
L. Kini
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.P. Sugrue
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.P. Sugrue
O.A. Glenn
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O.A. Glenn
C.P. Hess
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.P. Hess
A.M. Rauschecker
aFrom the Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.M. Rauschecker
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Reddy UM,
    2. Filly RA,
    3. Copel JA
    ; Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Department of Health and Human Services, NIH. Prenatal imaging: ultrasonography and magnetic resonance imaging. Obstet Gynecol 2008;112:145–57 doi:10.1097/01.AOG.0000318871.95090.d9 pmid:18591320
    CrossRefPubMed
  2. 2.↵
    1. Glenn OA,
    2. Barkovich AJ
    . Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, Part 1. AJNR Am J Neuroradiol 2006;27:1604–11 pmid:16971596
    PubMedWeb of Science
  3. 3.↵
    1. Girard NJ,
    2. Chaumoitre K
    . The brain in the belly: what and how of fetal neuroimaging? J Magn Reson Imaging 2012;36:788–804 doi:10.1002/jmri.23596 pmid:22987757
    CrossRefPubMed
  4. 4.↵
    1. Glenn OA,
    2. Barkovich AJ
    . Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: Part 2. AJNR Am J Neuroradiol 2006;27:1807–14 pmid:17032846
    PubMedWeb of Science
  5. 5.↵
    1. Parazzini C,
    2. Righini A,
    3. Rustico M, et al
    . Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks. Neuroradiol 2008;50:877–83 doi:10.1007/s00234-008-0421-7 pmid:18563404
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Conte G,
    2. Milani S,
    3. Palumbo G, et al
    . Prenatal brain MR imaging: reference linear biometric centiles between 20 and 24 gestational weeks. AJNR Am J Neuroradiol 2018;39:963–67 doi:10.3174/ajnr.A5574 pmid:29519792
    Abstract/FREE Full Text
  7. 7.↵
    1. Li H,
    2. Yan G,
    3. Luo W, et al
    . Mapping fetal brain development based on automated segmentation and 4D brain atlasing. Brain Struct Funct 2021;226:1961–72 doi:10.1007/s00429-021-02303-x pmid:34050792
    CrossRefPubMed
  8. 8.↵
    1. Andescavage NN,
    2. Plessis AD,
    3. McCarter R, et al
    . Complex trajectories of brain development in the healthy human fetus. Cereb Cortex (Cortex) 2017;27:5274–83 doi:10.1093/cercor/bhw306 pmid:27799276
    CrossRefPubMed
  9. 9.↵
    1. Gholipour A,
    2. Rollins CK,
    3. Velasco-Annis C, et al
    . A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci Rep 2017;7:476 doi:10.1038/s41598-017-00525-w pmid:28352082
    CrossRefPubMed
  10. 10.↵
    1. Duong MT,
    2. Rudie JD,
    3. Wang J, et al
    . Convolutional neural network for automated FLAIR lesion segmentation on clinical brain MR imaging. AJNR Am J Neuroradiol 2019;40:1282–90 doi:10.3174/ajnr.A6138 pmid:31345943
    Abstract/FREE Full Text
  11. 11.↵
    1. Rudie JD,
    2. Weiss DA,
    3. Colby JB, et al
    . Three-dimensional U-Net convolutional neural network for detection and segmentation of intracranial metastases. Radiology Artif Intell 2021;3:e200204 doi:10.1148/ryai.2021200204 pmid:34136817
    CrossRefPubMed
  12. 12.↵
    1. Platt JC,
    2. Simard PY,
    3. Steinkraus D
    . Best practices for convolutional neural networks. 2003. https://www.researchgate.net/publication/2880624. Accessed August 20, 2021
  13. 13.↵
    1. Habas PA,
    2. Kim K,
    3. Rousseau F, et al
    . Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum Brain Mapp 2010;31:1348–58 doi:10.1002/hbm.20935 pmid:20108226
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Serag A,
    2. Aljabar P,
    3. Ball G, et al
    . Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Neuroimage 2012;59:2255–65 doi:10.1016/j.neuroimage.2011.09.062 pmid:21985910
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Gholipour A,
    2. Estroff JA,
    3. Barnewolt CE, et al
    . Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 2011;6:329–39 doi:10.1007/s11548-010-0512-x pmid:20625848
    CrossRefPubMed
  16. 16.↵
    1. Jarvis DA,
    2. Finney CR,
    3. Griffiths PD
    . Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging. Eur Radiol 2019;29:3488–95 doi:10.1007/s00330-018-5938-5 pmid:30683990
    CrossRefPubMed
  17. 17.↵
    1. Khalili N,
    2. Lessmann N,
    3. Turk E, et al
    . Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn Reson Imaging 2019;64:77–89 doi:10.1016/J.MRI.2019.05.020 pmid:31181246
    CrossRefPubMed
  18. 18.↵
    1. Zhao L,
    2. Asis-Cruz JD,
    3. Feng X, et al
    . Automated 3D fetal brain segmentation using an optimized deep learning approach. AJNR Am J Neuroradiol 2022;43:448–54 doi:10.3174/ajnr.A7419 pmid:35177547
    Abstract/FREE Full Text
  19. 19.↵
    1. Denison FC,
    2. Macnaught G,
    3. Semple SI, et al
    . Brain development in fetuses of mothers with diabetes: a case-control MR imaging study. AJNR Am J Neuroradiol 2017;38:1037–44 doi:10.3174/ajnr.A5118 pmid:28302607
    Abstract/FREE Full Text
  20. 20.↵
    1. Studholme C,
    2. Kroenke CD,
    3. Dighe M
    . Motion corrected MRI differentiates male and female human brain growth trajectories from mid-gestation. Nat Commun 2020;11:3038 doi:10.1038/s41467-020-16763-y pmid:32546755
    CrossRefPubMed
  21. 21.↵
    1. Knickmeyer RC,
    2. Xia K,
    3. Lu Z, et al
    . Impact of demographic and obstetric factors on infant brain volumes: a population neuroscience study. Cereb Cortex 2017;27:5616–25 doi:10.1093/cercor/bhw331 pmid:27797836
    CrossRefPubMed
  22. 22.↵
    1. Machado-Rivas F,
    2. Gandhi J,
    3. Choi JJ, et al
    . Normal growth, sexual dimorphism, and lateral asymmetries at fetal brain MRI. Radiology 2022;303:162–70 doi:10.1148/radiol.211222 pmid:34931857
    CrossRefPubMed
  23. 23.↵
    1. Marek S,
    2. Tervo-Clemmens B,
    3. Calabro FJ, et al
    . Reproducible brain-wide association studies require thousands of individuals. Nature 2022;603:654–60 doi:10.1038/s41586-022-04492-9 pmid:35296861
    CrossRefPubMed
  24. 24.↵
    1. Rauschecker AM,
    2. Nedelec P,
    3. Sugrue LP, et al
    . Interinstitutional portability of a deep learning brain MRI lesion segmentation algorithm. Radiol Artif Intell 2022;4:e200152 doi:10.1148/ryai.2021200152 pmid:35146430
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 44 (1)
American Journal of Neuroradiology
Vol. 44, Issue 1
1 Jan 2023
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development of Gestational Age–Based Fetal Brain and Intracranial Volume Reference Norms Using Deep Learning
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C.B.N. Tran, P. Nedelec, D.A. Weiss, J.D. Rudie, L. Kini, L.P. Sugrue, O.A. Glenn, C.P. Hess, A.M. Rauschecker
Development of Gestational Age–Based Fetal Brain and Intracranial Volume Reference Norms Using Deep Learning
American Journal of Neuroradiology Jan 2023, 44 (1) 82-90; DOI: 10.3174/ajnr.A7747

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Fetal Brain Volume Norms Using Deep Learning
C.B.N. Tran, P. Nedelec, D.A. Weiss, J.D. Rudie, L. Kini, L.P. Sugrue, O.A. Glenn, C.P. Hess, A.M. Rauschecker
American Journal of Neuroradiology Jan 2023, 44 (1) 82-90; DOI: 10.3174/ajnr.A7747
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Frontal Paraventricular Cysts
  • Sodium MRI in Pediatric Brain Tumors
  • FRACTURE MR in Congenital Vertebral Anomalies
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire