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ORIGINAL RESEARCH
PEDIATRICS

Development of Gestational Age–Based Fetal Brain and
Intracranial Volume Reference Norms Using Deep Learning

C.B.N. Tran, P. Nedelec, D.A. Weiss, J.D. Rudie, L. Kini, L.P. Sugrue, O.A. Glenn, C.P. Hess, and
A.M. Rauschecker

ABSTRACT

BACKGROUND AND PURPOSE: Fetal brain MR imaging interpretations are subjective and require subspecialty expertise. We aimed
to develop a deep learning algorithm for automatically measuring intracranial and brain volumes of fetal brain MRIs across gesta-
tional ages.

MATERIALS AND METHODS: This retrospective study included 246 patients with singleton pregnancies at 19–38 weeks gestation. A
3D U-Net was trained to segment the intracranial contents of 2D fetal brain MRIs in the axial, coronal, and sagittal planes. An addi-
tional 3D U-Net was trained to segment the brain from the output of the first model. Models were tested on MRIs of 10 patients
(28 planes) via Dice coefficients and volume comparison with manual reference segmentations. Trained U-Nets were applied to 200
additional MRIs to develop normative reference intracranial and brain volumes across gestational ages and then to 9 pathologic
fetal brains.

RESULTS: Fetal intracranial and brain compartments were automatically segmented in a mean of 6.8 (SD, 1.2) seconds with median
Dices score of 0.95 and 0.90, respectively (interquartile ranges, 0.91–0.96/0.89–0.91) on the test set. Correlation with manual volume
measurements was high (Pearson r ¼ 0.996, P, .001). Normative samples of intracranial and brain volumes across gestational ages
were developed. Eight of 9 pathologic fetal intracranial volumes were automatically predicted to be .2 SDs from this age-specific
reference mean. There were no effects of fetal sex, maternal diabetes, or maternal age on intracranial or brain volumes across ges-
tational ages.

CONCLUSIONS: Deep learning techniques can quickly and accurately quantify intracranial and brain volumes on clinical fetal brain
MRIs and identify abnormal volumes on the basis of a normative reference standard.

ABBREVIATIONS: GA ¼ gestational age; IQR ¼ interquartile range; SS-FSE ¼ single-shot fast spin-echo

In vivo fetal imaging, modalities such as ultrasonography and
MR imaging, plays a central role in the assessment of fetal health

and development during pregnancy. Fetal ultrasonography1 and
MR imaging have complementary strengths, with MR imaging

less limited by factors such as oligohydramnios, challenging fetal

presentation, or acoustic shadowing from the ossifying calvaria.2

MR imaging can also provide superior anatomic detail, which is

an important consideration when assessing potential abnormal-

ities of some fetal structures, especially in the fetal brain.3 Thus,

fetal brain MR imaging is performed in pregnant patients as

early as 18 weeks of gestational age (GA), often after an anomaly

is suspected on sonography, to provide further clarification for

clinical management.4 Fetal brain MR imaging is rapidly grow-

ing as a standard imaging technique for informing management

decisions.
However, interpretation of fetal brain MR imaging remains a

substantial challenge. Radiologic evaluation of fetal MR imaging
is largely subjective and requires a high level of subspecialty ex-
pertise for consistent and accurate interpretation. Quantitative

analysis is generally limited to 1D biometric measurements such
as cerebral biparietal diameter or the transverse diameter of the
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atria of the lateral ventricles.5,6 Such manual measurements are
performed as single linear measurements of 3D structures and

are inherently subjective and prone to error.
While methods exist for quantitative evaluation of fetal MR

imaging,7,8 including a normative atlas of the fetal brain,9 these
methods typically use atlas-based segmentation techniques. Such
techniques are well-suited for research questions but have limited
clinical utility due to long processing times (hours) and frequent
failure of segmentation in clinical cases that involve anatomic
abnormalities.

Conversely, automated deep learning–based segmentation
methods have the potential to consistently and objectively evalu-
ate individual fetal intracranial and brain volumes in seconds.
In particular, the U-Net architecture has proved highly effective
for other biomedical segmentation tasks.10,11 Obtaining quanti-
tative estimates of intracranial/brain volume and deviations
from normative data via automated deep learning methods

would represent a major advancement in
objective clinical and large-scale research
assessments of fetal MR imaging.

We sought to develop a deep learn-
ing–based method for automated fetal
brain MR imaging segmentation and
volume quantification from single-shot
fast spin-echo (SS-FSE) T2-weighted
MRIs. Given the clinical relevance of
fetal intracranial and brain volumes,
analogous to routine 2D thecal and cer-
ebral biparietal diameter measurements,
our proof-of-concept study was specifi-
cally aimed at developing a method for
fast and accurate measurement of these
3D volumes. Our ultimate goal was to
apply the method to a large clinical pop-
ulation of fetal brain MRIs with normal
findings to develop a normative refer-
ence for intracranial and brain volumes
across a wide range of GAs.

MATERIALS AND METHODS
Definitions
Intracranial volume is defined as total vol-
ume within the cranium, including the
brain, meninges, and CSF within the sub-
arachnoid spaces and ventricles. Brain vol-
ume is defined as the combined volume
of the brain parenchyma and ventricles.
These 3D volumemeasurements are anal-
ogous to 2D thecal and cerebral biparie-
tal/fronto-occipital diameters, which are
currently used in clinical practice.

Patient and Data Selection
This retrospective study was approved
by the institutional review board of the
University of California, San Francisco,

with a waiver of informed consent based on minimal risk.
Included were a total of 246 study patients (ages, 16–45 years; me-
dian age, 33) who underwent fetal MRIs (SS-FSE T2WI) between
1999 and 2021.

Patients were identified by searching radiology reports in the
institutional radiology archives (mPower; Nuance Communications).
Inclusion criteria were patients with singleton pregnancies who
underwent fetal brain MR imaging at our institution. Patients
with abnormalities on their fetal MR imaging radiology report
were excluded. Of the remaining patients, 46 patients were ran-
domly sampled to constitute the training (n ¼ 36) and test (n ¼
10) data sets (Fig 1, left column). The 10 patients included in the
test sample were selected to include a representative range of
GAs. The remaining 36 cases were assigned to the training sam-
ple, and their GAs were confirmed to also be representative of a
wide range of GAs typical of the patients that undergo fetal MR
imaging. For each patient, 1 optimal (non-motion-degraded) 3D

FIG 1. Flow chart shows study subject selection per exclusion criteria, from initial patient search
to training set and test set randomization and development of a normative volume data set. n
indicates the number of patients; np, number of planes of imaging.
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volume was manually chosen for each of the 3 planes of acquisi-
tion (axial, coronal, and sagittal).

An additional 9 patients’ fetal MRIs were acquired using the
search terms “microcephaly” and “macrocephaly” in the radiol-
ogy report, to estimate fetal intracranial volume in cases of
pathology in which intracranial volume was subjectively abnor-
mal, as assessed by the pediatric neuroradiologist at the time of
clinical interpretation.

Finally, an additional 200 patients’ fetal brain MRIs were
obtained through consecutive selection from the initial search,
and these formed the data set for measuring normal intracranial
volume (Fig 1, right column). This set of patients was selected to
include only patients with normal intracranial and brain volumes
for GA. However, to be representative of the clinical population,
we allowed inclusion of patients with mild extracranial (eg, neck
or spine) abnormalities (n ¼ 19) and variations/mild abnormal-
ities of intracranial structures (eg, mildly prominent subarach-
noid or posterior fossa CSF spaces) (n ¼ 12) but with normal
biparietal measurements.

Additional Data from Chart Review
The GA of all fetuses at the time of MR imaging was obtained via
chart review. In addition, maternal age at the time of MR imaging,
the presence of maternal diabetes, and fetal sex were obtained via
chart review when available, noting that not all auxiliary informa-
tion was present for each patient.

MR Imaging Parameters and Ground Truth
Segmentations
Ground truth intracranial and brain volume segmentations were
based on manual segmentations performed by a medical student
or radiology resident (C.B.N.T.) using ITK-SNAP (www.itksnap.
org) and verified by a neuroradiologist (A.M.R., with 3 years’
postresidency experience including with fetal brain MR imaging).
Manual segmentations were independently performed in each
plane of acquisition (axial, coronal, sagittal).

Imaging data were acquired using SS-FSE T2WI in a range of
imaging parameters typical of clinical fetal brain MR imaging stud-
ies (TE range ¼ 58–102ms, median ¼ 94ms; TR range ¼ 1–8 sec-
onds, median ¼ 4 seconds; in-plane resolution ¼ 0.8–0.95mm,
median¼ 0.94mm; section thickness¼ 2–4mm, median¼ 3mm).

Image Preprocessing
Images, while obtained using 2D acquisition protocols, were
treated as 3D volumes by concatenating slices into a volumetric
image. The advantage of treating images as 3D volumes is that in-
formation in slices adjacent to any particular 2D section may be
informative for segmentation. These volumes were normalized by
the mean signal intensity to zero mean and unit standard devia-
tions (SDs). Individual acquisitions were resampled to a 1-mm3

3D isotropic volume via linear interpolation. During training, elas-
tic transformations12 were applied to the images for data augmen-
tation. These included small random rotations, translations,
scaling, and free-form deformations. To fit within graphic memory
constraints, the full-resolution augmented imaging volume was
divided into 96 � 96 � 96 mm cubes (3D patches) as the network
input. During training, the cubes were randomly sampled across

the full-image volumes. The fetal intracranial contents may consti-
tute only a relatively small portion of the entire MR image, which
also includes portions of the mother’s anatomy and other fetal
anatomy. Therefore, to prevent sample imbalance, we sampled the
same number of patches that included fetal intracranial voxels as
those that excluded fetal intracranial voxels during training. A total
of 60 patches were extracted from each training imaging volume
(n ¼ 36 � 3 ¼ 108), with 3 random augmentations per volume,
resulting in 180 patches per volume or a total of 19,440 training
patches. During testing, the MR imaging volume was densely
sampled with the cubes using a step size of 32 mm in each direc-
tion, resulting in a 64-mm overlap between cubes. The overlapped
segmentation predictions were averaged.

Convolutional Neural Network Model Architecture (U-
Net) and Training
We used a 3D U-Net convolutional neural network architecture
for segmentation of fetal brain MRIs. The same architecture was
used unmodified from one previously developed to perform
automated FLAIR lesion and intracranial metastases segmenta-
tions on MR imaging of the adult brain.10,11 Our focus was on
expanding the clinical application of this architecture by training
it to perform intracranial and brain volume segmentations of fetal
brain MR imaging. Thus, 2 sequential models were trained, the
first for intracranial segmentation and a second for segmenting
the brain from the intracranial volume identified by the first
model. For the intracranial model, training was performed in 3
acquisition planes (axial, coronal, sagittal) when available across
the 36 patients in the training set, treating each acquisition as an
independent training sample, for 108 total training volumes. For
the brain model, training was performed on a subset of 31 ran-
domly chosen volumes using the same data augmentation param-
eters and a 6-fold cross-validation to create an ensemble model
from a small training data set. For both models, we used a kernel
size of 3 � 3 � 3, a dilation factor of 2 across all convolutional
layers, and a batch size of twenty-four 3D patches. Cross-entropy
loss and an Adam optimizer with a learning rate of 5 � 10�4

were used. The models were trained for 30 and 270 epochs,
respectively. Hyperparameter optimization was not performed.
Thresholding of the probability maps was set to 0.7 to decrease
the false-positive rate relative to a threshold of 0.5. The network
was implemented using TensorFlow 2 (www.tensorflow.org).
Implementation was on a DGX-2 AI server, Version 4.5.0 (GNU/
Linux 4.15.0–128-generic x86_64; NVIDIA).

Convolutional Neural Network Model Testing
Testing was conducted on 10 independent test patients, each with
2–3 acquisition planes, for a total of 28 test samples. During test-
ing, the outputs of both models were postprocessed by taking the
largest contiguous cluster of voxels and discarding the remaining
predicted voxels to eliminate small false-positives outside the fetal
intracranial contents. For the brain model, inner holes were also
filled (scipy.ndimage.binary_fill_holes; SciPy 1.8.1; scipy.org).

The pretrained U-Nets were ultimately applied to a large set
of fetal brain MRIs with clinically normal findings, as assessed by
the radiology report, to develop a normative reference for intra-
cranial and brain volume across GAs (Fig 2).
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Normative Volume Generation
For the additional set of 200 fetal MRIs with normal findings
without manual segmentation, a single high-quality image vol-
ume for each acquisition plane was chosen manually, as above.
This process is very fast, taking approximately 3 seconds per vol-
ume. The volumes generated by the U-Net for the 10 patients in
the test group were also included in the normative sample. For
the brain model, an ensemble model was built by averaging all
probability prediction maps of all 6 folds and then thresholding
them at 0.7 to create the binary segmentation. Exclusion criteria
(Fig 1) were applied separately to patients and acquisitions,

including patient MRIs that did not meet technical/quality speci-
fications in at least 2 planes of imaging (eg, highly motion-
degraded images or early termination of the examination) and
generated volumes for each plane of imaging that were not bio-
logically plausible (,10 cm3 or.2 SDs of the entire distribution
of volumes). Patients were then excluded from the normative
sample if only a single generated volume remained or if exactly 2
volumes remained but there was a large (.30%) discrepancy
between the calculated volumes, thereby limiting confidence in
the estimate. This process resulted in a final total of 184 patients
in the normative reference group.

FIG 2. Method for training and testing the U-Nets. A, Schematic of 3D U-Net architecture used for training with sample input and output patch
is shown. B, Manually segmented images were split into training (n ¼ 36 patients) and test (n ¼ 10 patients) sets. C, After confirmation of
adequate segmentation performance on the test set, the trained U-Nets were applied to an additional 200 fetal brain MRIs for calculating nor-
mal fetal intracranial and brain volumes across GAs.
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Volume Calculations
Predictions of intracranial and brain volumes were calculated
from predicted segmentations independently for each imaging
plane. To arrive at a single intracranial and brain volume estimate
for each fetus, we combined these 3 data points for each patient
applied independently to intracranial and brain volumes as fol-
lows: After applying the exclusion criteria, notably excluding bio-
logically implausible statistical outlier volumes defined as,10 cm3

or .470 cm3 of intracranial volume or 373 cm3 of brain volume
(.2 SDs of entire underlying distribution), the median of the
remaining 2–3 data points was used to estimate the total volume
for each fetus. If only a single data point remained after exclusion
criteria were applied, then this patient was excluded from the set
of normative volumes (Fig 1).

Code Sharing
All code used for training and testing the model in this article has
been made available at https://github.com/rauschecker-sugrue-
labs/fetal-brain-segmentation. Code includes image preprocess-
ing, model training, and model inference, including combining
individual measurements from varying planes of acquisition into
a final volume estimate.

Statistical Analysis
Segmentation Assessment. Performance of the intracranial U-
Net was evaluated on the 28 test samples via comparison with
manual segmentations. Performance of the brain U-Net was
evaluated for each of the 6 folds (5–6 volumes each) on the data
unseen by that fold. Dice scores were calculated for each test sam-
ple, comparing segmentations predicted by U-Net with the
human reference standard. Mean and median Dice scores were
assessed for each acquisition plane to assess the quality of auto-
mated segmentation by the acquisition plane. A Pearson correla-
tion test was used to determine whether there was an association
between GA and the Dice score.

Volumetry Assessment and Statistical Analysis. Total fetal intra-
cranial and brain volumes calculated from processed U-Net out-
puts on their respective test samples were compared with those
calculated from manual segmentations on the same test samples.
A Pearson correlation test was used to determine the association
between the volumes calculated from both methods. The root
median square percentage error of those volumes was calcu-
lated, and 95% limits of agreement for each comparison were
calculated. In addition, we performed a repeated measures
ANOVA to assess whether any consistent pattern of differences
in the volume calculations existed, depending on the acquisition
plane chosen.

To investigate the effects of acquired demographic variables
(fetal sex, maternal diabetes, and maternal age, binarized as $ or
,35 years), we computed linear regressions for each demographic
variable and for each category. To determine whether any signifi-
cant differences existed between categories within a demographic
variable, a bootstrapping technique was used. Specifically, the dif-
ferences in the slopes and intercepts of best fit lines for 50,000 ran-
dom permutations of these categories were computed, and a z

score and 2-tailed P value of the original data from this analysis
are reported.

Stata/MP (Version 16; https://www.stata.com/features/overview/
statamp/), Excel (Version 16.37; Microsoft), customMatlab (R2019a;
MathWorks) scripts, and custom Python (Version 3.8) scripts were
used for these analyses. P values , .05 were considered statistically
significant.

RESULTS
Patient Demographics
Training Set. GAs of the 36 fetuses comprising the training set
ranged from 20.6 to 36.9weeks (median, 24.6weeks). Maternal age
ranged from 19 to 40years (median, 33years). Nine (25%) fetuses
were female, 19 (53%) were male, and 8 (22%) were of unknown sex.
Four (11%) fetuses had a mother with a known history of diabetes.

Test Set. GAs of the 10 fetuses comprising the test set ranged
from 20.7 to 36.1 weeks (median, 27.4 weeks). Maternal age ranged
from 16 to 38 years (median, 33.5 years). Three (30%) fetuses were
female, 5 (50%) were male, and 2 (20%) were of unknown sex.
One (10%) fetus had a mother with a known history of diabetes.

Normative Values Set.GAs of the 184 fetuses comprising the final
normative values set ranged from 19.9 to 37.7 weeks (median, 24.6
weeks). Maternal age ranged from 16 to 45 years (median, 33
years). Forty-eight (26%) subjects were female, 67 (36%) were
male (including one XXY fetus), and 69 (37%) were of unknown
sex. Twenty-four (13%) fetuses had a mother with a known history
of diabetes.

Segmentation and Volumetry Performance on the Test Set. The
convolutional neural networks resulted in highly accurate seg-
mentations of fetal brains across a wide range of GAs (Fig 3). On
test samples, overlap between segmentations predicted by the U-
Nets and by human reference standards were near-perfect for
both intracranial and brain segmentations. For intracranial seg-
mentations, the median Dice score was 0.95 (interquartile range
[IQR], 0.94–0.96) in the axial plane, 0.94 (IQR, 0.91–0.96) in the
coronal plane, and 0.94 (IQR, 0.90–0.96) in the sagittal plane; and
for brain, 0.90 (IQR, 0.89–0.90) in the axial plane, 0.89 (IQR,
0.88–0.90) in the coronal plane, and 0.90 (IQR, 0.90–0.91) in the
sagittal plane (Fig 3B). A Pearson correlation test revealed a stat-
istically significant positive association of r ¼ 0.49 between GA
and the Dice score (P ¼ .006) for intracranial segmentations. A
repeated measures ANOVA demonstrated that there was no con-
sistent pattern of differences in the volume calculations, depend-
ing on the acquisition plane chosen (P ¼ .56). There was no
consistent bias of volumes generated by the automated-versus-
manual intracranial segmentations (Fig 3C).

The automated method generated total intracranial volumes
highly correlated with manual measurements (Pearson r ¼ 0.996,
P, .001). The volumes generated had low error, with a root me-
dian squared percentage error of 3.3% (Fig 3D). As expected, GA
and estimated intracranial volume were correlated (Spearman
r ¼ 0.92, P, .001).
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Timing of the U-Net
For an individual fetal brain MRI using our hardware, the U-Net
produced an intracranial segmentation and associated mean vol-
ume in 6.8 (SD, 1.2) seconds on average. By comparison, an expe-
rienced human manually segmenting these volumes requires
approximately 15 minutes for an accurate segmentation in an
individual acquisition plane.

Normative Intracranial and Brain Volumes across GAs
To determine normal intracranial and brain volumes across a
large population of fetal brain MRIs, we applied the trained 3D
U-Nets to 209 clinically normal fetal brain MRIs (n ¼ 184 after
the exclusions described in Materials and Methods). As described
in further detail in Materials and Methods, the models were
applied in individual planes of acquisition (axial, sagittal, and cor-
onal), which were then combined into 1 estimate of intracranial
volume per fetus.

As expected, intracranial and brain volumes increased with
GA, as did the variability of volumes (Fig 4 and Table). For exam-
ple, the mean intracranial volume at 22–24 weeks was 103 (SD,
14) cm3 (n ¼ 60), while the mean intracranial volume at 32–
34weeks was 319 (SD, 48) cm3 (n¼ 17).

To demonstrate the utility of this normative sample of auto-
mated fetal brain MR imaging volume measurements, we
applied the trained intracranial U-Net to 9 pathologic brain
MRIs (Fig 5A). Eight of the 9 volume calculations fell outside 2
SDs below or above the normative sample volumes (for GA),
and the ninth volume was nearly 2 SDs above the average. We
further investigated the relationship between GA and intracra-
nial volume as a function of several demographic variables, such
as fetal sex (Fig 5B), maternal age (Fig 5C), and the presence of
maternal diabetes (Fig 5D). There were no appreciable effects of
these demographic variables on the relationship between GA
and intracranial volume in our data set, as shown by analyzing

FIG 3. Performance of the U-Net for automated segmentation of intracranial (blue) and brain (green) volumes on the test set. A, Representative
examples of the segmentation overlay on a section of the original brain MR imaging in various acquisition planes across multiple gestational ages
(w ¼ weeks, d ¼ days). B, Individual Dice scores and boxplots compare the automated with the ground truth manual segmentation within axial,
coronal, and sagittal dimensions, distinguishing scores for intracranial and brain segmentations. C, Bland-Altman plot demonstrates no linear trend
in the difference between manual and automatically calculated intracranial volumes across the range of volumes tested. Each type of marker cor-
responds to axial, sagittal, and coronal measurements on an individual fetal brain. D, Scatterplot demonstrates strong agreement between manual
and automated intracranial segmentation volumes, color-coded by GA. The best fit line and the 1:1 identity line are shown, nearly overlapping.
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the differences in best fit lines among categories (P values for
slope and intercept respectively: maternal age, .16, .15; fetal sex,
.80, .81; and maternal diabetes, .45, .37).

DISCUSSION
We demonstrate that a 3D U-Net produced accurate automated
segmentations and volumetric measurements of fetal intracranial
and brain volumes on clinical 2D MRIs acquired in 3 planes. The
U-Net functions across a wide range of GAs (19–38 weeks).
Automated estimates of intracranial and brain volume closely
approximated calculations of intracranial volume based on manual
segmentations (Fig 3). This method has the potential to provide
accurate volumetric data that can be incorporated into assessments
of fetal neurologic development in a clinical population.

After validating the accuracy of volumetric measurements, the
automated deep learning–based method was applied to 184 fetal
brain MRIs with normal findings to develop a reference standard
of normal intracranial and brain volumes across GAs (Fig 4). By
comparing individuals’ automated volumes with this reference
standard, we were able to correctly identify most pathologic
(microcephalic and macrocephalic) brain volumes in a few sec-
onds, demonstrating the potential clinical utility of this approach.

Our method was trained on and applied to a population of fetal
brain MRIs with clinically normal findings, as assessed by the
absence of reported abnormalities on a pediatric neuroradiologist’s
report. The variability of resulting measurements may be higher
for this clinical population than for a population of completely

normal pregnancies recruited for a specific research study, in
which mothers with comorbidities might be excluded. Prior stud-
ies have deployed atlas-based methods for fetal brain segmenta-
tion.13-15 Although methods such as those of Jarvis et al,16 provide
grossly similar total intracranial volume measurements, small dif-
ferences in normative values were noted, and further research will
need to identify whether such differences may be due to measure-
ment techniques, patient sampling differences, or other factors.
The advantage of applying our method in a heterogeneous clinical
population is that normative values are needed for this population
of clinically normal fetuses, to which the clinical tool would ulti-
mately be applied.

The results of the automated segmentation of fetal brain MRIs
using our 3D U-Net are comparable with those of prior studies
using 2D U-Nets to segment the fetal brain.7,17 For example, Li et
al7 demonstrated similarly high Dice scores with a 2D U-Net after
training on 212 fetal brains (23–38 weeks of age) for the purpose of
building an atlas of 35 fetal brains in the Chinese population.
However, this study did not provide normative values across the
population. Our results are also in line with a recent report using a
3D U-Net for multicompartment fetal brain segmentation, demon-
strating improved results compared with atlas-based techniques.18

However, this new method requires a slice-to-volume reconstruc-
tion before the application of the U-Net, which can be difficult to
implement robustly, requiring additional technical expertise. In
contrast, our method functions on 2D images directly, combining
multiple measurements in different planes of acquisition, simplify-
ing the method’s use. We make this method and all related code
publicly available and easy to use so that larger normative data sets
may be easily built across institutions.

The automated deep learning method developed here lends
itself well to both clinical and research use. For clinical use, the
speed of processing of the method allows near real-time quantita-
tive volumetric data to be obtained. From a research perspective,
the method can be used at the population level to examine associa-
tions between various genetic or environmental exposures and fetal
brain development. For example, by using automated volume cal-
culations from our normative population, we demonstrate that in
our data, there are no significant effects of maternal diabetes,19 fetal
sex,20 or maternal age21 on the relationship between GA and total
intracranial volume. The lack of an effect of fetal sex on brain

FIG 4. Intracranial (blue) and brain (green) volumes as a function of GA across 184 fetal MRIs with normal findings. Individual points represent
automated measurements of volume in individual fetal brain MRIs. The center line represents a moving average across these points, 61 (dark
shading) or 2 (light shading) SDs. One fetal brain is shown as an example in the insets. Images shown in Figure 3A are denoted by a1.

Intracranial (n = 184) and brain (n = 178) volumes (5th, 50th, and
95th percentiles) as a function of GA across a set MRIs of fetuses
with clinically normal brains, grouped by 2-week intervals

GA (Weeks)
Intracranial Volume Brain Volume
5th 50th 95th 5th 50th 95th

19.5–21.5 60.4 71.2 100.8 37.1 49.7 70.8
21.5–23.5 82.8 99.8 122.2 53.1 65.5 80.5
23.5–25.5 91.8 139.5 166.0 54.7 86.9 110.6
25.5–27.5 120.2 169.1 213.5 78.8 114.6 141.2
27.5–29.5 184.4 217.0 276.0 119.4 150.4 187.5
29.5–31.5 229.1 269.9 350.1 145.2 180.2 241.7
31.5–33.5 248.9 306.0 383.4 172.0 206.8 255.8
33.5–35.5 321.4 366.3 406.3 213.2 268.1 307.9
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volume may seem surprising, given recent22 and prior20 results
demonstrating sexual dimorphisms in brain volume subregions,
including total brain volume. However, associational studies, includ-
ing our own, have relatively small sample sizes (less than thousands
of samples), which can result in seemingly conflicting results,23 lend-
ing urgency to the need for simple tools that can quantify aspects of
fetal brain MR imaging across multiple institutions to create large
normative data sets. Larger samples may reveal, for example, that
these sexual differences emerge only later in gestation,20 which
smaller samples cannot adequately resolve.

There are several limitations to this study. The study was only
applied to images from a single institution; inference of fetal intra-
cranial volumes at other institutions would require further algorith-
mic evaluation and possibly additional training.24 The algorithm
was trained on only a small number of studies, and while this train-
ing combined with efficient use of data resulted in impressive per-
formance, it is likely that more accurate and more extensive
normative data could be created by increasing the training data set
size. A larger data set would also give the opportunity to create a
validation split that could be used to perform hyperparameter opti-
mization and thus additionally improve the performance of the
model. Furthermore, the algorithm trained here only produces 2
quantitative values, namely intracranial and brain volumes. Future
work will use similar methods to produce additional quantitative
measurements, such as volumes of brain substructures (eg, cerebel-
lum, pons, corpus callosum) or measures of whole-brain morphol-
ogy (eg, sulcation), toward a more complete quantitative fetal brain
evaluation. Finally, the current process of applying the U-Net to

each plane of acquisition individually was developed to provide a
trade-off between accurate segmentations and manual intervention.
While 9 acquisitions (3 in each plane) are obtained for each fetal
MR imaging at our institution, our method currently requires man-
ual selection of the best acquisition for each plane of imaging to
avoid inclusion of acquisitions with motion or other artifacts, mir-
roring routine clinical practice. Methods could be incorporated to
automatically disregard acquisitions with excessive artifacts or
motion and to include additional available acquisitions for more ro-
bust volume measurements.

CONCLUSIONS
Automated deep learning methods can achieve accurate segmenta-
tions of fetal brain MR imaging and provide accurate quantitative
estimates of fetal intracranial and brain volumes across a wide
range of GAs. This method, which is made available to the research
community, allows the largely automated creation of normative
references for clinical and research applications.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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