Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging
Open Access

Automatic Machine Learning to Differentiate Pediatric Posterior Fossa Tumors on Routine MR Imaging

H. Zhou, R. Hu, O. Tang, C. Hu, L. Tang, K. Chang, Q. Shen, J. Wu, B. Zou, B. Xiao, J. Boxerman, W. Chen, R.Y. Huang, L. Yang, H.X. Bai and C. Zhu
American Journal of Neuroradiology July 2020, 41 (7) 1279-1285; DOI: https://doi.org/10.3174/ajnr.A6621
H. Zhou
gDepartment of Neurology (H.Z., L.T., B.X.), Xiangya Hospital of Central South University, Changsha, Hunan, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Zhou
R. Hu
aFrom the School of Computer Science and Engineering (R.H., B.Z., C.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Hu
O. Tang
fWarren Alpert Medical School, Brown University (O.T.), Providence, Rhode Island
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O. Tang
C. Hu
jDepartment of Neurology (C.H.), Hunan Provincial People’s Hospital, Changsha, Hunan, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Hu
L. Tang
gDepartment of Neurology (H.Z., L.T., B.X.), Xiangya Hospital of Central South University, Changsha, Hunan, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Tang
K. Chang
iDepartment of Radiology (K.C.), Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Chang
Q. Shen
dRadiology (Q.S., J.W.), Second Xiangya Hospital of Central South University, Changsha, Hunan, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Q. Shen
J. Wu
dRadiology (Q.S., J.W.), Second Xiangya Hospital of Central South University, Changsha, Hunan, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Wu
B. Zou
aFrom the School of Computer Science and Engineering (R.H., B.Z., C.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Zou
B. Xiao
gDepartment of Neurology (H.Z., L.T., B.X.), Xiangya Hospital of Central South University, Changsha, Hunan, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Xiao
J. Boxerman
eDepartment of Diagnostic Imaging (J.B., H.X.B.), Rhode Island Hospital
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Boxerman
W. Chen
kDepartment of Pathology (W.C.), Hunan Children’s Hospital, Changsha, Hunan, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Chen
R.Y. Huang
hDepartment of Radiology (R.Y.H.), Brigham and Women’s Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.Y. Huang
L. Yang
cDepartments of Neurology (L.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Yang
H.X. Bai
eDepartment of Diagnostic Imaging (J.B., H.X.B.), Rhode Island Hospital
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.X. Bai
C. Zhu
aFrom the School of Computer Science and Engineering (R.H., B.Z., C.Z.)
bCollege of Literature and Journalism (C.Z.), Central South University, Changsha, Hunan, China
lMobile Health Ministry of Education-China Mobile Joint Laboratory (C.Z.), China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Zhu
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Curtin SC,
    2. Miniño AM,
    3. Anderson RN
    . National Center for Health Statistics. Declines in cancer death rates among children and adolescents in the United States, 1999–2014. NCHS data brief, no 257, Sept 2016. https://www.cdc.gov/nchs/products/databriefs/db257.htm. Accessed March 21, 2020
  2. 2.↵
    1. Brandão LA,
    2. Poussaint TY
    . Posterior fossa tumors. Neuroimaging Clin N Am 2017;27:1–37 doi:10.1016/j.nic.2016.08.001 pmid:27889018
    CrossRefPubMed
  3. 3.↵
    1. O’Brien D,
    2. Caird J,
    3. Kennedy M, et al
    . Posterior fossa tumours in childhood: evaluation of presenting clinical features. Ir Med J 2001;94:52–53 pmid:11321174
    PubMed
  4. 4.↵
    1. Prasad KS,
    2. Ravi D,
    3. Pallikonda V, et al
    . Clinicopathological study of pediatric posterior fossa tumors. J Pediatr Neurosci 2017;12:245–50 doi:10.4103/jpn.JPN_113_16 pmid:29204199
    CrossRefPubMed
  5. 5.↵
    1. Bidiwala S,
    2. Pittman T
    . Neural network classification of pediatric posterior fossa tumors using clinical and imaging data. Pediatr Neurosurg 2004;40:8–15 doi:10.1159/000076571 pmid:15007223
    CrossRefPubMed
  6. 6.↵
    1. Becker LE
    . Pathology of pediatric brain tumors. Neuroimaging Clin N Am 1999;9:671–90 pmid:10517939
    PubMed
  7. 7.↵
    1. Rizzo S,
    2. Botta F,
    3. Raimondi S, et al
    . Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2018;2:36 doi:10.1186/s41747-018-0068-z pmid:30426318
    CrossRefPubMed
  8. 8.↵
    1. Gillies RJ,
    2. Kinahan PE,
    3. Hricak H
    . Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–77 doi:10.1148/radiol.2015151169 pmid:26579733
    CrossRefPubMed
  9. 9.↵
    1. Fan Y,
    2. Chen C,
    3. Zhao F, et al
    . Radiomics-based machine learning technology enables better differentiation between glioblastoma and anaplastic oligodendroglioma. Front Oncol 2019;9:1164 doi:10.3389/fonc.2019.01164 pmid:31750250
    CrossRefPubMed
  10. 10.↵
    1. Chen C,
    2. Ou X,
    3. Wang J, et al
    . Radiomics-based machine learning in differentiation between glioblastoma and metastatic brain tumors. Front Oncol 2019;9: 806 doi:10.3389/fonc.2019.00806 pmid:31508366
    CrossRefPubMed
  11. 11.↵
    1. Sidey-Gibbons JA,
    2. Sidey-Gibbons CJ
    . Machine learning in medicine: a practical introduction. BMC Med Res Methodol 2019;19:64 doi:10.1186/s12874-019-0681-4 pmid:30890124
    CrossRefPubMed
  12. 12.↵
    1. Parmar C,
    2. Grossmann P,
    3. Bussink J, et al
    . Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015;5:13087 doi:10.1038/srep13087 pmid:26278466
    CrossRefPubMed
  13. 13.↵
    1. Olson R,
    2. Urbanowicz R,
    3. Andrews P, et al
    . Automating biomedical data science through tree-based pipeline optimization. In: Proceedings of the 19th European Conference, EvoApplications 2016, Porto, Portugal; March 30 to April 1, 2016
  14. 14.↵
    1. Le TT,
    2. Fu W,
    3. Moore JH
    . Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 2020;36:250–56 doi:10.1093/bioinformatics/btz470 pmid:31165141
    CrossRefPubMed
  15. 15.↵
    1. Zwanenburg A,
    2. Vallieres M,
    3. Abdalah MA, et al
    . The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020;295:328–38 doi:10.1148/radiol.2020191145 pmid:32154773
    CrossRefPubMed
  16. 16.↵
    1. Vallieres M,
    2. Kay-Rivest E,
    3. Perrin LJ, et al
    . Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep 2017;7:10117 doi:10.1038/s41598-017-10371-5 pmid:28860628
    CrossRefPubMed
  17. 17.↵
    1. Olson RS,
    2. Urbanowicz RJ,
    3. Andrews PC, et al
    . Automating biomedical data science through tree-based pipeline optimization. In: Proceedings of the 19th European Conference, EvoApplications 2016; Porto, Portugal; March 30 to April 1, 2016
  18. 18.↵
    1. Van Asch V
    . Macro-and micro-averaged evaluation measures [BASIC DRAFT]. https://pdfs.semanticscholar.org/1d10/6a2730801b6210a67f7622e4d192bb309303.pdf. Accessed March 21, 2020
  19. 19.↵
    1. Agresti A,
    2. Coull BA
    . Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician 1998;52:119–26 doi:10.1080/00031305.1998.10480550
    CrossRefWeb of Science
  20. 20.↵
    1. Poretti A,
    2. Meoded A,
    3. Huisman TA
    . Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging 2012;35:32–47 doi:10.1002/jmri.22722 pmid:21989968
    CrossRefPubMed
  21. 21.↵
    1. Kerleroux B,
    2. Cottier JP,
    3. Janot K, et al
    . Posterior fossa tumors in children: radiological tips & tricks in the age of genomic tumor classification and advance MR technology. J Neuroradiol 2020;47:46–53 doi:10.1016/j.neurad.2019.08.002 pmid:31541639
    CrossRefPubMed
  22. 22.↵
    1. Pierce T,
    2. Kranz PG,
    3. Roth C, et al
    . Use of apparent diffusion coefficient values for diagnosis of pediatric posterior fossa tumors. Neuroradiol J 2014;27:233–44 doi:10.15274/NRJ-2014-10027 pmid:24750714
    CrossRefPubMed
  23. 23.↵
    1. Zitouni S,
    2. Koc G,
    3. Doganay S, et al
    . Apparent diffusion coefficient in differentiation of pediatric posterior fossa tumors. Jpn J Radiol 2017;35:448–53 doi:10.1007/s11604-017-0652-9 pmid:28550357
    CrossRefPubMed
  24. 24.↵
    1. Rumboldt Z,
    2. Camacho DL,
    3. Lake D, et al
    . Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 2006;27:1362–69 pmid:16775298
    Abstract/FREE Full Text
  25. 25.↵
    1. Gimi B,
    2. Cederberg K,
    3. Derinkuyu B, et al
    . Utility of apparent diffusion coefficient ratios in distinguishing common pediatric cerebellar tumors. Acad Radiol 2012;19:794–800 doi:10.1016/j.acra.2012.03.004 pmid:22513110
    CrossRefPubMed
  26. 26.↵
    1. Koral K,
    2. Alford R,
    3. Choudhury N, et al
    . Applicability of apparent diffusion coefficient ratios in preoperative diagnosis of common pediatric cerebellar tumors across two institutions. Neuroradiology 2014;56:781–88 doi:10.1007/s00234-014-1398-z pmid:24974083
    CrossRefPubMed
  27. 27.↵
    1. Jaremko JL,
    2. Jans LB,
    3. Coleman LT, et al
    . Value and limitations of diffusion-weighted imaging in grading and diagnosis of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 2010;31:1613–16 doi:10.3174/ajnr.A2155 pmid:20538820
    Abstract/FREE Full Text
  28. 28.↵
    1. Schneider JF,
    2. Confort-Gouny S,
    3. Viola A, et al
    . Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. J Magn Reson Imaging 2007;26:1390–98 doi:10.1002/jmri.21185 pmid:17968955
    CrossRefPubMed
  29. 29.↵
    1. Rodriguez Gutierrez D,
    2. Awwad A,
    3. Meijer L, et al
    . Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 2014;35:1009–15 doi:10.3174/ajnr.A3784 pmid:24309122
    Abstract/FREE Full Text
  30. 30.↵
    1. Orlenko A,
    2. Moore JH,
    3. Orzechowski P, et al
    . Considerations for automated machine learning in clinical metabolic profiling: altered homocysteine plasma concentration associated with metformin exposure. Pac Symp Biocomput 2018;23: 460–71 pmid:29218905
    PubMed
  31. 31.↵
    1. Su X,
    2. Chen N,
    3. Sun H, et al
    . Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Neuro Oncol 2020;22:393–401 doi:10.1093/neuonc/noz184 pmid:31563963
    CrossRefPubMed
  32. 32.↵
    1. Olson RS,
    2. Cava W,
    3. Mustahsan Z, et al
    . Data-driven advice for applying machine learning to bioinformatics problems. Pac Symp Biocomput 2018;23: 192–203 pmid:29218881
    PubMed
  33. 33.↵
    1. Quail DF,
    2. Joyce JA
    . The microenvironmental landscape of brain tumors. Cancer Cell 2017;31:326–41 doi:10.1016/j.ccell.2017.02.009 pmid:28292436
    CrossRefPubMed
  34. 34.↵
    1. Massimino M,
    2. Cefalo G,
    3. Riva D, et al
    . Long-term results of combined preradiation chemotherapy and age-tailored radiotherapy doses for childhood medulloblastoma. J Neurooncol 2012;108:163–71 doi:10.1007/s11060-012-0822-7 pmid:22350379
    CrossRefPubMed
  35. 35.↵
    1. Manias KA,
    2. Gill SK,
    3. MacPherson L, et al
    . Diagnostic accuracy and added value of qualitative radiological review of 1H-magnetic resonance spectroscopy in evaluation of childhood brain tumors. Neurooncol Pract 2019;6:428–37 doi:10.1093/nop/npz010 pmid:31832213
    CrossRefPubMed
  36. 36.↵
    1. Manias K,
    2. Gill SK,
    3. Zarinabad N, et al
    . Evaluation of the added value of 1H-magnetic resonance spectroscopy for the diagnosis of pediatric brain lesions in clinical practice. Neurooncol Pract 2018;5:18–27 doi:10.1093/nop/npx005 pmid:29692921
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (7)
American Journal of Neuroradiology
Vol. 41, Issue 7
1 Jul 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automatic Machine Learning to Differentiate Pediatric Posterior Fossa Tumors on Routine MR Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
H. Zhou, R. Hu, O. Tang, C. Hu, L. Tang, K. Chang, Q. Shen, J. Wu, B. Zou, B. Xiao, J. Boxerman, W. Chen, R.Y. Huang, L. Yang, H.X. Bai, C. Zhu
Automatic Machine Learning to Differentiate Pediatric Posterior Fossa Tumors on Routine MR Imaging
American Journal of Neuroradiology Jul 2020, 41 (7) 1279-1285; DOI: 10.3174/ajnr.A6621

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Automatic Machine Learning to Differentiate Pediatric Posterior Fossa Tumors on Routine MR Imaging
H. Zhou, R. Hu, O. Tang, C. Hu, L. Tang, K. Chang, Q. Shen, J. Wu, B. Zou, B. Xiao, J. Boxerman, W. Chen, R.Y. Huang, L. Yang, H.X. Bai, C. Zhu
American Journal of Neuroradiology Jul 2020, 41 (7) 1279-1285; DOI: 10.3174/ajnr.A6621
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology
  • Radiomics Can Distinguish Pediatric Supratentorial Embryonal Tumors, High-Grade Gliomas, and Ependymomas
  • Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Pediatric Neuroimaging

  • Frontal Paraventricular Cysts
  • Sodium MRI in Pediatric Brain Tumors
  • FRACTURE MR in Congenital Vertebral Anomalies
Show more Pediatric Neuroimaging

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • WM Neuroaxonal Loss in Type 1 Diabetes
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire