Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Texture Analysis in Cerebral Gliomas: A Review of the Literature

N. Soni, S. Priya and G. Bathla
American Journal of Neuroradiology June 2019, 40 (6) 928-934; DOI: https://doi.org/10.3174/ajnr.A6075
N. Soni
aFrom the Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Soni
S. Priya
aFrom the Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Priya
G. Bathla
aFrom the Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Bathla
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Auffinger B,
    2. Thaci B,
    3. Nigam P, et al
    . New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 Med Rep 2012;4:18 doi:10.3410/M4-18 pmid:22991580
    CrossRefPubMed
  2. 2.↵
    1. Kang Y,
    2. Choi SH,
    3. Kim YJ, et al
    . Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging–correlation with tumor grade. Radiology 2011;261:882–90 doi:10.1148/radiol.11110686 pmid:21969667
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Gulsen S
    . Achieving higher diagnostic results in stereotactic brain biopsy by simple and novel technique. Open Access Maced J Med Sci 2015;3:99–104 doi:10.3889/oamjms.2015.016 pmid:27275204
    CrossRefPubMed
  4. 4.↵
    1. Akay A,
    2. Rüksen M,
    3. Islekel S
    . Magnetic resonance imaging-guided stereotactic biopsy: a review of 83 cases with outcomes. Asian J Neurosurg 2019;14:90–95 doi:10.4103/ajns.AJNS_81_17 pmid:30937016
    CrossRefPubMed
  5. 5.↵
    1. Mazurowski MA
    . Radiogenomics: what it is and why it is important. J Am Coll Radiol 2015;12:862–66 doi:10.1016/j.jacr.2015.04.019 pmid:26250979
    CrossRefPubMed
  6. 6.↵
    1. Law M,
    2. Yang S,
    3. Wang H, et al
    . Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003;24:1989–98 pmid:14625221
    Abstract/FREE Full Text
  7. 7.↵
    1. Gutman DA,
    2. Cooper LA,
    3. Hwang SN, et al
    . MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 2013;267:560–69 doi:10.1148/radiol.13120118 pmid:23392431
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Naveed MA,
    2. Goyal P,
    3. Malhotra A, et al
    . Grading of oligodendroglial tumors of the brain with apparent diffusion coefficient, magnetic resonance spectroscopy, and dynamic susceptibility contrast imaging. Neuroradiol J 2018;31:379–85 doi:10.1177/1971400918757217 pmid:29469659
    CrossRefPubMed
  9. 9.↵
    Texture. Merriam-Webster.com. https://www.merriam-webster.com/dictionary/texture. Accessed January 10, 2019.
  10. 10.↵
    1. Raja R,
    2. Sinha N,
    3. Saini J, et al
    . Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas. Neuroradiology 2016;58:1217–31 doi:10.1007/s00234-016-1758-y pmid:27796448
    CrossRefPubMed
  11. 11.↵
    1. Miles KA,
    2. Ganeshan B,
    3. Hayball MP
    . CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging 2013;13:400–06 doi:10.1102/1470-7330.2013.9045 pmid:24061266
    CrossRefPubMed
  12. 12.↵
    1. Buch K,
    2. Kuno H,
    3. Qureshi MM, et al
    . Quantitative variations in texture analysis features dependent on MRI scanning parameters: a phantom model. J Appl Clin Med Phys 2018;19:253–64 doi:10.1002/acm2.12482 pmid:30369010
    CrossRefPubMed
  13. 13.↵
    1. Mayerhoefer ME,
    2. Szomolanyi P,
    3. Jirak D, et al
    . Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys 2009;36:1236–43 doi:10.1118/1.3081408 pmid:19472631
    CrossRefPubMed
  14. 14.↵
    1. Depeursinge A,
    2. Foncubierta-Rodriguez A,
    3. Van De Ville D, et al
    . Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 2014;18:176–96 doi:10.1016/j.media.2013.10.005 pmid:24231667
    CrossRefPubMed
  15. 15.↵
    1. Mayerhoefer ME,
    2. Szomolanyi P,
    3. Jirak D, et al
    . Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study. Invest Radiol 2009;44:405–11 doi:10.1097/RLI.0b013e3181a50a66 pmid:19465863
    CrossRefPubMed
  16. 16.↵
    1. Constantinides C
    1. Larroza A,
    2. Bodí V,
    3. Moratal D
    . Texture analysis in magnetic resonance imaging: review and considerations for future applications. In: Constantinides C, ed. Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies. Rijeka: IntechOpen; 2016
  17. 17.↵
    1. Depeursinge A,
    2. Al-Kadi OS,
    3. Mitchell JR
    1. Szczypiński PM,
    2. Klepaczko A
    . MaZda: a framework for biomedical image texture analysis and data exploration. In: Depeursinge A, Al-Kadi OS, Mitchell JR, eds. Biomedical Texture Analysis. Amsterdam: Elsevier; 2017:315–47
  18. 18.↵
    1. Schaer R,
    2. Cid YD,
    3. Alkim E, et al
    . Web-Based Tools for Exploring the Potential of Quantitative Imaging Biomarkers on Radiology. Waltham: Academic Press; 2017
  19. 19.↵
    1. Di Cataldo S,
    2. Ficarra E
    . Mining textural knowledge in biological images: applications, methods and trends. Comput Struct Biotechnol J 2017;15:56–67 doi:10.1016/j.csbj.2016.11.002 pmid:27994798
    CrossRefPubMed
  20. 20.↵
    1. Kolossváry M,
    2. Kellermayer M,
    3. Merkely B, et al
    . Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging 2018;33:26–34 doi:10.1097/RTI.0000000000000268 pmid:28346329
    CrossRefPubMed
  21. 21.↵
    1. Bashir U,
    2. Siddique MM,
    3. McLean E, et al
    . Imaging heterogeneity in lung cancer: techniques, applications, and challenges. AJR Am J Roentgenol 2016;207:534–43 doi:10.2214/AJR.15.15864 pmid:27305342
    CrossRefPubMed
  22. 22.↵
    1. Davnall F,
    2. Yip CS,
    3. Ljungqvist G, et al
    . Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 2012;3:573–89 doi:10.1007/s13244-012-0196-6 pmid:23093486
    CrossRefPubMed
  23. 23.↵
    1. Lubner MG,
    2. Smith AD,
    3. Sandrasegaran K, et al
    . CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics 2017;37:1483–503 doi:10.1148/rg.2017170056 pmid:28898189
    CrossRefPubMed
  24. 24.↵
    1. Depeursinge A,
    2. Fageot J,
    3. Al-Kadi OS
    . Fundamentals of texture processing for biomedical image analysis: a general definition and problem formulation. Biomedical Texture Analysis. Amsterdam: Elsevier; 2017:1–27
  25. 25.↵
    1. Louis DN,
    2. Perry A,
    3. Reifenberger G, et al
    . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–20 doi:10.1007/s00401-016-1545-1 pmid:27157931
    CrossRefPubMed
  26. 26.↵
    1. Chand P,
    2. Amit S,
    3. Gupta R, et al
    . Errors, limitations, and pitfalls in the diagnosis of central and peripheral nervous system lesions in intraoperative cytology and frozen sections. J Cytol 2016;33:93–97 doi:10.4103/0970-9371.182530 pmid:27279685
    CrossRefPubMed
  27. 27.↵
    1. Ryu YJ,
    2. Choi SH,
    3. Park SJ, et al
    . Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One 2014;9:e108335 doi:10.1371/journal.pone.0108335 pmid:25268588
    CrossRefPubMed
  28. 28.↵
    1. Kinoshita M,
    2. Sakai M,
    3. Arita H, et al
    . Introduction of high throughput magnetic resonance T2-weighted image texture analysis for WHO grade 2 and 3 gliomas. PLoS One 2016;11:e0164268 doi:10.1371/journal.pone.0164268 pmid:27716832
    CrossRefPubMed
  29. 29.↵
    1. Skogen K,
    2. Schulz A,
    3. Dormagen JB, et al
    . Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol 2016;85:824–29 doi:10.1016/j.ejrad.2016.01.013 pmid:26971430
    CrossRefPubMed
  30. 30.↵
    1. Tian Q,
    2. Yan LF,
    3. Zhang X, et al
    . Radiomics strategy for glioma grading using texture features from multiparametric MRI. J Magn Reson Imaging 2018;48:1518–28 doi:10.1002/jmri.26010 pmid:29573085
    CrossRefPubMed
  31. 31.↵
    1. Xie T,
    2. Chen X,
    3. Fang J, et al
    . Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading. J Magn Reson Imaging 2018;47:1099–111 doi:10.1002/jmri.25835 pmid:28845594
    CrossRefPubMed
  32. 32.↵
    1. Qi XX,
    2. Shi DF,
    3. Ren SX, et al
    . Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery. Eur Radiol 2018;28:1748–55 doi:10.1007/s00330-017-5108-1 pmid:29143940
    CrossRefPubMed
  33. 33.↵
    1. Mazurowski MA,
    2. Zhang J,
    3. Peters KB, et al
    . Computer-extracted MR imaging features are associated with survival in glioblastoma patients. J Neurooncol 2014;120:483–88 doi:10.1007/s11060-014-1580-5 pmid:25151504
    CrossRefPubMed
  34. 34.↵
    1. Brynolfsson P,
    2. Nilsson D,
    3. Henriksson R, et al
    . ADC texture: an imaging biomarker for high-grade glioma? Med Phys 2014;41:101903 doi:10.1118/1.4894812 pmid:25281955
    CrossRefPubMed
  35. 35.↵
    1. Upadhaya T,
    2. Morvan Y,
    3. Stindel E, et al
    . A framework for multimodal imaging-based prognostic model building: preliminary study on multimodal MRI in glioblastoma multiforme. IRBM 2015;36:345–50 doi:10.1016/j.irbm.2015.08.001
    CrossRef
  36. 36.↵
    1. Yang D,
    2. Rao G,
    3. Martinez J, et al
    . Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 2015;42:6725–35 doi:10.1118/1.4934373 pmid:26520762
    CrossRefPubMed
  37. 37.↵
    1. Chaddad A,
    2. Tanougast C
    . Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients. Med Biol Eng Comput 2016;54:1707–18 doi:10.1007/s11517-016-1461-5 pmid:26960324
    CrossRefPubMed
  38. 38.↵
    1. Lee J,
    2. Jain R,
    3. Khalil K, et al
    . Texture feature ratios from relative CBV maps of perfusion MRI are associated with patient survival in glioblastoma. AJNR Am J Neuroradiol 2016;37:37–43 doi:10.3174/ajnr.A4534 pmid:26471746
    Abstract/FREE Full Text
  39. 39.↵
    1. Molina D,
    2. Pérez-Beteta J,
    3. Luque B, et al
    . Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival. Br J Radiol 2016;89:20160242 doi:10.1259/bjr.20160242 pmid:27319577
    CrossRefPubMed
  40. 40.↵
    1. Kickingereder P,
    2. Burth S,
    3. Wick A, et al
    . Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016;280:880–89 doi:10.1148/radiol.2016160845 pmid:27326665
    CrossRefPubMed
  41. 41.↵
    1. Grossmann P,
    2. Narayan V,
    3. Chang K, et al
    . Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 2017;19:1688–97 doi:10.1093/neuonc/nox092 pmid:28499022
    CrossRefPubMed
  42. 42.↵
    1. Chaddad A,
    2. Daniel P,
    3. Desrosiers C, et al
    . Novel radiomic features based on joint intensity matrices for predicting glioblastoma patient survival time. IEEE J Biomed Health Inform 2019;23:795–804 doi:10.1109/JBHI.2018.2825027 pmid:29993848
    CrossRefPubMed
  43. 43.↵
    1. Bahrami N,
    2. Piccioni D,
    3. Karunamuni R, et al
    . Edge contrast of the FLAIR hyperintense region predicts survival in patients with high-grade gliomas following treatment with bevacizumab. AJNR Am J Neuroradiol 2018;39:1017–24 doi:10.3174/ajnr.A5620 pmid:29622553
    Abstract/FREE Full Text
  44. 44.↵
    1. Liu Y,
    2. Zhang X,
    3. Feng N, et al
    . The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis. Acta Radiol 2018;59:1239–46 doi:10.1177/0284185118756951 pmid:29430935
    CrossRefPubMed
  45. 45.↵
    1. Combs SE,
    2. Rieken S,
    3. Wick W, et al
    . Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: one step forward, and one step back? Radiat Oncol 2011;6:115 doi:10.1186/1748-717X-6-115 pmid:21910919
    CrossRefPubMed
  46. 46.↵
    1. Xia L,
    2. Wu B,
    3. Fu Z, et al
    . Prognostic role of IDH mutations in gliomas: a meta-analysis of 55 observational studies. Oncotarget 2015;6:17354–65 doi:10.18632/oncotarget.4008 pmid:26220714
    CrossRefPubMed
  47. 47.↵
    1. Chow D,
    2. Chang P,
    3. Weinberg BD, et al
    . Imaging genetic heterogeneity in glioblastoma and other glial tumors: review of current methods and future directions. AJR Am J Roentgenol 2018;210:30–38 doi:10.2214/AJR.17.18754 pmid:28981352
    CrossRefPubMed
  48. 48.↵
    1. Zhang X,
    2. Tian Q,
    3. Wu YX, et al
    . IDH mutation assessment of glioma using texture features of multimodal MR images. Proceedings of SPIE 2017;10134 doi:10.1117/12.2254212
    CrossRef
  49. 49.↵
    1. Hsieh KL,
    2. Chen CY,
    3. Lo CM
    . Radiomic model for predicting mutations in the isocitrate dehydrogenase gene in glioblastomas. Oncotarget 2017;8:45888–97 doi:10.18632/oncotarget.17585 pmid:28526813
    CrossRefPubMed
  50. 50.↵
    1. Eichinger P,
    2. Alberts E,
    3. Delbridge C, et al
    . Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci Rep 2017;7:13396 doi:10.1038/s41598-017-13679-4 pmid:29042619
    CrossRefPubMed
  51. 51.↵
    1. Bahrami N,
    2. Hartman SJ,
    3. Chang YH, et al
    . Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics. J Neurooncol 2018;139:633–42 doi:10.1007/s11060-018-2908-3 pmid:29860714
    CrossRefPubMed
  52. 52.↵
    1. Shofty B,
    2. Artzi M,
    3. Ben Bashat D, et al
    . MRI radiomics analysis of molecular alterations in low-grade gliomas. Int J Comput Assist Radiol Surg 2018;13:563–71 doi:10.1007/s11548-017-1691-5 pmid:29270916
    CrossRefPubMed
  53. 53.↵
    1. Jakola AS,
    2. Zhang YH,
    3. Skjulsvik AJ, et al
    . Quantitative texture analysis in the prediction of IDH status in low-grade gliomas. Clin Neurol Neurosurg 2018;164:114–20 doi:10.1016/j.clineuro.2017.12.007 pmid:29220731
    CrossRefPubMed
  54. 54.↵
    1. Rui W,
    2. Ren Y,
    3. Wang Y, et al
    . MR textural analysis on T2 FLAIR images for the prediction of true oligodendroglioma by the 2016 WHO genetic classification. J Magn Reson Imaging 2018;48:74–83 doi:10.1002/jmri.25896 pmid:29140606
    CrossRefPubMed
  55. 55.↵
    1. Han L,
    2. Wang S,
    3. Miao Y, et al
    . MRI texture analysis based on 3D tumor measurement reflects the IDH1 mutations in gliomas: a preliminary study. Eur J Radiol 2019;112:169–79 doi:10.1016/j.ejrad.2019.01.025 pmid:30777207
    CrossRefPubMed
  56. 56.↵
    1. Li Y,
    2. Liu X,
    3. Qian Z, et al
    . Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Eur Radiol 2018;28:2960–68 doi:10.1007/s00330-017-5267-0 pmid:29404769
    CrossRefPubMed
  57. 57.↵
    1. Li Y,
    2. Liu X,
    3. Xu K, et al
    . MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 2018;28:356–62 doi:10.1007/s00330-017-4964-z pmid:28755054
    CrossRefPubMed
  58. 58.↵
    1. Li Y,
    2. Qian Z,
    3. Xu K, et al
    . MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neuroimage Clin 2017;17:306–11 doi:10.1016/j.nicl.2017.10.030 pmid:29527478
    CrossRefPubMed
  59. 59.↵
    1. Suh HB,
    2. Choi YS,
    3. Bae S, et al
    . Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol 2018;28:3832–39 doi:10.1007/s00330-018-5368-4 pmid:29626238
    CrossRefPubMed
  60. 60.↵
    1. Kunimatsu A,
    2. Kunimatsu N,
    3. Yasaka K, et al
    . Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma. Magn Reson Med Sci 2019;18:44–52 doi:10.2463/mrms.mp.2017-0178 pmid:29769456
    CrossRefPubMed
  61. 61.↵
    1. Kunimatsu A,
    2. Kunimatsu N,
    3. Kamiya K, et al
    . Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci 2018;17:50–57 doi:10.2463/mrms.mp.2017-0044 pmid:28638001
    CrossRefPubMed
  62. 62.↵
    1. Xiao DD,
    2. Yan PF,
    3. Wang YX, et al
    . Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis. Clin Neurol Neurosurg 2018;173:84–90 doi:10.1016/j.clineuro.2018.08.004 pmid:30092408
    CrossRefPubMed
  63. 63.↵
    1. Alcaide-Leon P,
    2. Dufort P,
    3. Geraldo AF, et al
    . Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol 2017;38:1145–50 doi:10.3174/ajnr.A5173 pmid:28450433
    Abstract/FREE Full Text
  64. 64.↵
    1. Slotboom J,
    2. Schaer R,
    3. Ozdoba C, et al
    . A novel method for analyzing DSCE-images with an application to tumor grading. Invest Radiol 2008;43:843–53 doi:10.1097/RLI.0b013e3181893605 pmid:19002056
    CrossRefPubMed
  65. 65.↵
    1. Verma RK,
    2. Slotboom J,
    3. Heldner MR, et al
    . Characterization of microcirculation in multiple sclerosis lesions by dynamic texture parameter analysis (DTPA). PLoS One 2013;8:e67610 doi:10.1371/journal.pone.0067610 pmid:23874432
    CrossRefPubMed
  66. 66.↵
    1. Verma RK,
    2. Wiest R,
    3. Locher C, et al
    . Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): a feasibility study. Med Phys 2017;44:4000–08 doi:10.1002/mp.12356 pmid:28543071
    CrossRefPubMed
  67. 67.↵
    1. Skogen K,
    2. Schulz A,
    3. Helseth E, et al
    . Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis. Acta Radiol 2019;60:356–66 doi:10.1177/0284185118780889 pmid:29860889
    CrossRefPubMed
  68. 68.↵
    1. Ismail M,
    2. Hill V,
    3. Statsevych V, et al
    . Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite study. AJNR Am J Neuroradiol 2018;39:2187–93 doi:10.3174/ajnr.A5858 pmid:30385468
    Abstract/FREE Full Text
  69. 69.↵
    1. Ford J,
    2. Dogan N,
    3. Young L, et al
    . Quantitative radiomics: impact of pulse sequence parameter selection on MRI-based textural features of the brain. Contrast Media Mol Imaging 2018;2018:1729071 doi:10.1155/2018/1729071 pmid:30154684
    CrossRefPubMed
  70. 70.↵
    1. Yang F,
    2. Dogan N,
    3. Stoyanova R, et al
    . Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: a simulation study utilizing ground truth. Phys Med 2018;50:26–36 doi:10.1016/j.ejmp.2018.05.017 pmid:29891091
    CrossRefPubMed
  71. 71.↵
    1. Schad LR
    . Problems in texture analysis with magnetic resonance imaging. Dialogues Clin Neurosci 2004;6:235–42 pmid:22034056
    PubMed
  72. 72.↵
    1. Waugh SA,
    2. Lerski RA,
    3. Bidaut L, et al
    . The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms. Med Phys 2011;38:5058–66 doi:10.1118/1.3622605 pmid:21978050
    CrossRefPubMed
  73. 73.↵
    1. Molina D,
    2. Pérez-Beteta J,
    3. Martínez-González A, et al
    . Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization. PLoS One 2017;12:e0178843 doi:10.1371/journal.pone.0178843 pmid:28586353
    CrossRefPubMed
  74. 74.↵
    1. Collewet G,
    2. Strzelecki M,
    3. Mariette F
    . Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 2004;22:81–91 doi:10.1016/j.mri.2003.09.001 pmid:14972397
    CrossRefPubMed
  75. 75.↵
    1. Hainc N,
    2. Stippich C,
    3. Stieltjes B, et al
    . Experimental texture analysis in glioblastoma: a methodological study. Invest Radiol 2017;52:367–73 doi:10.1097/RLI.0000000000000354 pmid:28230716
    CrossRefPubMed
  76. 76.↵
    1. Varghese BA,
    2. Cen SY,
    3. Hwang DH, et al
    . Texture analysis of imaging: what radiologists need to know. AJR Am J Roentgenol 2019;212:520–28 doi:10.2214/AJR.18.20624 pmid:30645163
    CrossRefPubMed
  77. 77.↵
    1. Suzuki K
    . Overview of deep learning in medical imaging. Radiol Phys Technol 2017;10:257–73 doi:10.1007/s12194-017-0406-5 pmid:28689314
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 40 (6)
American Journal of Neuroradiology
Vol. 40, Issue 6
1 Jun 2019
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Texture Analysis in Cerebral Gliomas: A Review of the Literature
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N. Soni, S. Priya, G. Bathla
Texture Analysis in Cerebral Gliomas: A Review of the Literature
American Journal of Neuroradiology Jun 2019, 40 (6) 928-934; DOI: 10.3174/ajnr.A6075

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Texture Analysis in Cerebral Gliomas: A Review of the Literature
N. Soni, S. Priya, G. Bathla
American Journal of Neuroradiology Jun 2019, 40 (6) 928-934; DOI: 10.3174/ajnr.A6075
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Radiomics-Based Differentiation of Glioblastoma and Metastatic Disease: Impact of Different T1-Contrast-Enhanced Sequences on Radiomics Features and Model Performance
  • Impact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain Neoplasms
  • Image-localized biopsy mapping of brain tumor heterogeneity: A single-center study protocol
  • Image-localized Biopsy Mapping of Brain Tumor Heterogeneity: A Single-Center Study Protocol
  • Accuracy of magnetic resonance imaging texture analysis in differentiating low-grade from high-grade gliomas: systematic review and meta-analysis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire