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REVIEW ARTICLE

Texture Analysis in Cerebral Gliomas: A Review of
the Literature

X N. Soni, X S. Priya, and X G. Bathla

ABSTRACT
SUMMARY: Texture analysis is a continuously evolving, noninvasive radiomics technique to quantify macroscopic tissue heterogeneity
indirectly linked to microscopic tissue heterogeneity beyond human visual perception. In recent years, systemic oncologic applications of
texture analysis have been increasingly explored. Here we discuss the basic concepts and methodologies of texture analysis, along with a
review of various MR imaging texture analysis applications in glioma imaging. We also discuss MR imaging texture analysis limitations and
the technical challenges that impede its widespread clinical implementation. With continued advancement in computational processing,
MR imaging texture analysis could potentially develop into a valuable clinical tool in routine oncologic imaging.

ABBREVIATIONS: AUC � area under the curve; CE � contrast-enhanced; GLCM � gray-level co-occurrence matrix; GLRLM � gray-level run-length matrix; HGG �
high-grade glioma; IDH � isocitrate dehydrogenase; IDM � inverse difference moment; LGG � low-grade glioma; MRTA � MR imaging texture analysis; PCNSL�
primary central nervous system lymphoma; PCA � principal component analysis; SVM � support vector machine; TA � texture analysis

Gliomas are central nervous system tumors of glial origin, with

glioblastoma being the most common and aggressive sub-

type, having a median survival of 14.5 months and 10% survival at

5 years.1 Despite advanced imaging, accurate noninvasive predic-

tion of glioma grade, survival, molecular status, and treatment

response remains challenging. Brain biopsy remains the reference

standard for histologic and genetic classification, but it is invasive

and costly.2 Additionally, the inherently high molecular hetero-

geneity in gliomas may decrease the accuracy and prognostic

value of stereotactic biopsy diagnosis. Moreover, despite stereo-

tactic biopsy, the pathologic diagnosis may remain inconclusive

in about 7%–15% of patients.3,4 This scenario necessitates preop-

erative identification of imaging surrogates to accurately assess

global tumor heterogeneity and predict glioma grade, genetic mi-

lieu, and survival.5

Even though multiparametric MR imaging features show sig-

nificant agreement in terms of morphologic features, some of

which are strongly associated with poor survival, the accuracy of

these imaging variables to predict genetic heterogeneity and prog-

nosis is rather limited.6,7 Similarly, advanced MR imaging tech-

niques such as diffusion, perfusion, and MR spectroscopy have

also been beneficial, but with modest success.8 Texture analysis

(TA) is a noninvasive method to quantify macroscopic tissue het-

erogeneity indirectly linked to microscopic tissue heterogeneity.

Recently, MR imaging texture analysis (MRTA)-based studies

have shown promise in predicting glioma grade, survival, molec-

ular status, and response assessment. However, despite the con-

tinued work, consensus on the clinical role of MRTA remains

elusive. Here we review the basic concepts behind MRTA, its ap-

plications in glioma imaging, its limitations, current challenges,

and potential future directions.

MRTA: Concepts and Methodology
Texture, according to Merriam-Webster.com, is defined as

“something composed of closely interwoven elements,” just as the

structure formed by threads of a fabric identifies its character.9

Similarly, an image texture is a representation of pixel intensities,

their distribution, and their interrelationships, which may or may

not be discernible to the human eye. TA noninvasively measures

tumor heterogeneity (through parameters like kurtosis, entropy,

and pixel distribution that potentially correlate with cellular den-

sity, angiogenesis, and necrosis) and may better predict tumor

biology.10,11

The workflow of MRTA is represented in the Figure.

Acquisition parameters such as magnet strength, spatial reso-

lution, signal-to-noise ratio, and different pulse sequences may

Received February 9, 2019; accepted after revision April 22.

From the Department of Radiology, University of Iowa Hospitals and Clinics, Iowa
City, Iowa.

Sarv Priya and Neetu Soni share equal first authorship.

Please address correspondence to Sarv Priya, MD, Department of Radiology, 3978
JPP, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242; e-mail: sarv-
priya@uiowa.edu; @sarvpriya1985

Indicates open access to non-subscribers at www.ajnr.org

Indicates article with supplemental on-line tables.

http://dx.doi.org/10.3174/ajnr.A6075

928 Soni Jun 2019 www.ajnr.org

https://orcid.org/0000-0003-2082-1634
https://orcid.org/0000-0003-2442-1902
https://orcid.org/0000-0003-3170-242X
https://twitter.com/sarvpriya1985


influence MRTA features.12 Most interesting, however, variations

in these parameters can provide supplementary texture information,

an added advantage of MR imaging over other imaging modalities.13

Postacquisition, an image undergoes preprocessing, which generally

involves segmentation, image interpolation, intensity normalization,

gray-level reduction, magnetic field inhomogeneity correction, and

filtration. Performance of all these steps except segmentation is not a

requirement for TA but helps enhance texture features and main-

tains uniformity and standardization.

Preprocessing steps can be performed on both open-source

and commercially available software. The first step, segmentation,

involves drawing an ROI manually or automatically either on a

single 2D slice (or multiple slices) or a 3D-VOI.14 Next, to im-

prove matrix resolution, interpolation is applied for which images

are remapped to isotropic spacing to standardize the TA in all 3

directions. Furthermore, interpolation transforms the image into

a higher matrix size and improves texture classification.15

Different MR imaging sequences have various ranges of inten-

sities for the same image. This feature is addressed through inten-

sity normalization, which extends the gray-level distribution of

each MR image to the whole value range (0 –255). It enhances the

contrast between the tumor and background tissues and is

achieved by either remapping the brightness to minimum or max-

imum value in the histogram, using mean � 3 SD, or by using the

histogram range between the first and the 99th percentile of the

gray-scale image.

The undesirable effect of magnetic susceptibility on image tex-

ture can also be modified by use of the filtration process.16 Filtra-

tion can also be applied to derive new maps that individually

extract and enhance subtle features otherwise lost while analyzing

the original conventional image—that is, it converts an image

into different anatomic scales varying from 2 mm (fine features),

3–5 mm (medium features), and 6 mm (coarse features). Further-

more, gray-level reduction is essential in the computation of gray-

level matrices because TA can be computed on 16, 32, 64, 128, or

256 levels and actual MR imaging ranges up to 1024 levels.16 Be-

cause increasing the number of gray levels makes them computa-

tionally extensive without an added advantage, gray-level matri-

ces are therefore computed at 5 or 6 bits per pixel.17

Feature extraction is the next step and includes agnostic and

semantic features. Semantic features include shape, necrosis, vas-

cularity, location, and speculation, and these can be quantified as

well. Hundreds of features can be computed from available

MRTA software.18 To overcome the issue of redundancy and

overfitting that may be seen with multiple extracted features, sev-

eral classifier models—Fischer coefficient, principal component

analysis (PCA), linear/nonlinear discriminant analysis, regression

models, support vector machine (SVM) with recursive feature

elimination, artificial neural network, and random forest classifi-

ers—are used as well as application of statistical methods to re-

duce the false discovery rate. These models extract the features

that have the best discriminative power.19 Alternately, unsuper-

vised deep learning models can also be used to agnostically gen-

erate discriminating texture features. This obviates generating

thousands of random texture features and subsequent optimal

feature selection as described above.

Types of TA
At present, statistical-, structural-, transform-, and spectral-based

TAs are the most common agnostic methods used. Statistical-

based TA depends on the pixel values, distribution, and spatial

interrelationship in the defined ROI.20

First-order statistical TA is a histogram representation of im-

age intensities in a predefined ROI and calculates mean, median,

percentile, SD, skewness entropy, uniformity, and kurtosis. Mean

is a measure of central tendency (average brightness), SD depicts

dispersion from the mean, skewness reflects asymmetry of the

histogram, kurtosis depicts the pointedness of the histogram (vi-

sual contrast), and entropy reflects the irregularity of the image-

intensity distribution. The more heterogeneous the tumor, the

higher the entropy is.20

Second-order or higher order statistical TA quantifies the im-

age pattern on the basis of the spatial relationship or co-occur-

rence of the pixel value. It consists of several methods, including

the 2 most common ones: gray-level co-occurrence matrix

(GLCM) and gray-level run-length matrix (GLRLM). The GLCM

measures the frequency of pixel pair distribution at a predefined

distance,21 usually measured in 4 directions (0°, 45°, 90°, and

135°) for 2D and in 13 directions for 3D.14 GLCM features include

homogeneity, inverse difference moment (IDM), dissimilarity,

correlation, energy, and entropy. GLRLM observes the run of a

specific pixel value over a chosen direction and consists of gray-

level nonuniformity, run-length nonuniformity, short-run em-

phasis, and long-run emphasis. Both GLCM and GLRLM are cal-

culated in different directions and averaged to make them

rotationally invariant. GLCM may be measured over different

pixel distances (for example, from 1 to 5), and similarly, GLRLM

is computed over different run lengths to compute different tex-

ture features from the same ROI. GLCM and GLRLM over short

distance and run provide fine texture, and over longer distance

and run provide coarse texture. Different texture features can also

be calculated in statistical methods by application of filters such as

bandpass or nonorthogonal wavelet transform, which allow ex-

traction of fine (�2 mm), medium (3–5 mm), and coarse texture

(�6 mm) using different filter values.22

Local binary patterns have high discriminative power and cal-

culate the pixel value by comparing it with neighboring pixels and

then assigning a binary value. Other higher order statistics include

busyness, coarseness, and contrast, which calculate the spatial re-

lationship among �3 gray-level pixel values.16

Structural (model-based) methods such as fractal analysis

provide information about the self-symmetry of the objects.

These are computationally extensive and less preferred. Spectral

methods include wavelet, Gabor, and Fourier transforms and are

based on transforming the spatial information of the image into

spatial frequencies.22

In general, the first- and second-order statistical methods are

used most commonly. First-order statistical methods provide

global information, and second-order statistical methods provide

FIGURE. The workflow of MRTA.
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additional information regarding the transition among pixel val-

ues. An important consideration is that 2 different tumors may

have similar distribution of intensities but may differ in their spa-

tial interrelationship; thus, histogram TA may be limited in such a

setting. Second-order statistical TA may be preferable, especially

for markedly heterogeneous tumors.23,24

MRTA Applications in Glioma Imaging
MRTA applications in gliomas are an active area of research, and

multiple reports have shown promising results (On-line Tables

1– 4). For the sake of simplicity, we have condensed various stud-

ies into 4 broad categories: MRTA for glioma grading, predicting

survival, glioma radiogenomics, and a miscellaneous category of

studies differentiating gliomas from other CNS tumors and as-

sessing treatment changes.

Glioma Grading
The World Health Organization classifies gliomas as low grade (I

and II) and high grade (III and IV).25 Pretherapy determination of

glioma grade can help optimize treatment strategy, predicting

therapeutic response, prognosis, and survival.10,26 On-line Table

1 summarizes prior studies evaluating MRTA for glioma grad-

ing.2,10,27-32 Some of these are briefly discussed below. In general,

most studies used either ADC maps, T1-contrast-enhanced (CE)

MR imaging, or a multiparametric technique along with a trans-

form statistical (filtration-histogram) technique or purely statis-

tical (first- or second-order) TA. Despite variabilities in TA soft-

ware, entropy values of the ADC maps consistently showed

promising results for differentiating low-grade gliomas (LGGs)

from high-grade gliomas (HGGs). Skogen et al29 performed his-

togram-based TA in 95 patients using CE-MR images and found

SD parameters at a fine texture highly significant (area under the

curve [AUC], 0.910) in distinguishing LGGs from HGGs. Tian et

al30 performed multiparametric TA in 153 patients (grades II–IV)

using an SVM classifier model. They reported 98% accuracy of

MRTA features for glioma grading. They also observed that while

multiparametric TA performed better in comparison with single-

sequence TA, T1-CE was the best single sequence. Xie et al31 ob-

served that entropy (AUC � 0.885) and IDM (AUC � 0.901) of

model-free and a dynamic contrast-enhanced MR imaging–

based model were able to differentiate grade III from grade IV and

grade II from grade III gliomas.

Glioma Survival Analysis
Prior studies have used features such as age, extent of resection,

degree of necrosis, Karnofsky scores, and enhancing tumor size as

prognostic predictors.33 On-line Table 2 summarizes MRTA

studies predicting survival in gliomas.34-44 As mentioned above,

these studies also had considerable heterogeneity in terms of

methodologies and classifier models. Most interesting, most stud-

ies found CE-MR imaging sequences to be the most useful for

predicting survival. Yang et al,36 for example, noted that even

though several texture parameters predicted 12-month survival,

CE-MR imaging sequences were the most accurate. They also

mentioned that single-image features or MR images may not suf-

fice because different combinations of image features and se-

quences are predictive for different tasks. Another multiparamet-

ric study by Kickingereder et al40 in 119 patients using supervised

PCA predicted progression-free and overall survival after extract-

ing 11 second-order texture features. The MRTA features outper-

formed clinical and radiologic risk models in predicting progno-

sis. Another multiparametric MRTA study by Upadhaya et al35 in

40 patients extracted the top 5 texture features from CE-MR im-

ages with an accuracy of 83% in predicting 15-month survival. Liu

et al44 (n � 119) also noted the best survival prediction on CE-MR

imaging sequences (AUC, 0.791; accuracy, 80.7%). They also dis-

covered that texture features derived from CE-MR imaging were

comparable with features derived from a combination of multiple

sequences.

Glioma Radiogenomics
The 2016 World Health Organization classification update of

gliomas incorporates genetic information for diagnosis. Radiog-

enomics refers to the relationship between imaging phenotypes

and genomics that might allow improved decision-making and

consequently improved patient outcomes.5 Established glioma

biomarkers include isocitrate dehydrogenase (IDH), 1p/19q-code-

letion, and methylguanine methyltransferase status. Immunohis-

tochemistry combined with genome sequencing is a standard

method for identifying glioma mutations.45,46 Many studies have

correlated multiparametric imaging features with glioma muta-

tions and, to date, have shown greater success for IDH status

compared with other mutations. Currently, standard glioblas-

toma therapy does not include mutation-specific treatment based

on molecular status.47

Multiple ongoing clinical trials are, however, evaluating

targeted treatments in gliomas.1 On-line Table 3 summarizes

the recently published MRTA studies on glioma radiogenom-

ics.48-55 Using SVM-recursive feature elimination, Zhang et al48

(n � 152) extracted the top 15 texture features from CE-MR im-

aging and T2WI with 82% accuracy for predicting IDH status.

Hsieh et al49 (n � 39) also reported similar results in predicting

IDH status by extracting 14 GLCM textural features on CE-MR

imaging. Han et al55 also showed that the joint variable derived

from T1WI, T2WI, and CE-MR imaging histograms and GLCM

features can be used for precise detection of IDH1-mutated glio-

mas. TA using B0 and fractional anisotropy maps has also shown

a high accuracy of 95% in predicting IDH status.50 Bahrami et al51

reported greater FLAIR tissue heterogeneity and lower edge con-

trast in IDH wild-type compared with IDH mutants. Jakola et al53

also reported greater accuracy for predicting IDH mutation using

3D-FLAIR. IDH-mutant 1p/19q-codeleted gliomas also have

shown similar results compared with an 1p/19q-intact group and

an unmethylated group. Shofty et al52 used retrospective data

from various MR imaging scanners with variable parameters. De-

spite the considerable data heterogeneity, they successfully pre-

dicted 1p/19q codeletion and discriminated LGGs on the basis of

1p/19q-codeletion status with an accuracy of 87% by extracting

the top 39 texture features, mostly from CE-MR imaging and

T2WI. Li et al56-58 accurately predicted alpha thalassemia mental-

retardation syndrome, epidermal growth factor receptor, and p53

status in patients with LGG on T2WI. In general, the second-

order TA on CE-MR imaging and FLAIR images mostly contrib-

uted to the high accuracy for predicting genomic status.
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Miscellaneous Applications
Glioblastoma imaging features may overlap primary central ner-

vous system lymphomas (PCNSLs) and metastases, rendering a

noninvasive distinction truly challenging.59 Recent MRTA stud-

ies, however, have shown promising results in differentiating

glioblastomas from PCNSLs and metastases (On-line Table

4).59-63,66 Kunimatsu et al60,61 differentiated glioblastomas from

PCNSLs with 75% accuracy by selecting the top 4 best-perform-

ing texture features from CE-MR images. Xiao et al62 found skew-

ness and kurtosis to be the best first-order features on CE-MR

imaging in a similar population. Suh et al59 reported 90% accu-

racy of radiomics-based machine learning algorithms compared

with visual analysis by 3 readers in differentiating PCNSLs from

glioblastomas. Similarly, Alcaide-Leon et al63 showed superiority

of the SVM classifier over human evaluation. Overall, better re-

sults were found using CE-MR imaging and machine-classifica-

tion models. Dynamic histogram analysis is a novel technique

using histogram-based texture parameter analysis on a time-se-

ries of dynamic susceptibility contrast MR imaging. Dynamic tex-

ture parameter analysis is a further extension of dynamic histo-

gram analysis that analyzes a larger set of time-dependent texture

maps from dynamic susceptibility contrast-enhanced series.64,65

By using dynamic texture parameter analysis, Verma et al66 ex-

tracted texture features from the earliest contrast phase of dy-

namic susceptibility contrast-enhanced perfusion maps and dif-

ferentiated glioblastomas from PCNSLs. Skogen et al67 used

MRTA on DTI-derived fractional anisotropy and ADC maps and

reported significantly higher heterogeneity in peritumoral edema

of glioblastomas compared with metastases.

Assessment of the therapeutic response based solely on Re-

sponse Assessment in Neuro-Oncology criteria, which are based

solely on the 2D size and enhancement, may be challenging.43

Recently, Ismail et al68 (n � 105) extracted the 2 most discrimi-

native 3D shape features of the enhancing tumor on CE-MR im-

aging, FLAIR, and T2WI and noted that 3D shape features could

distinguish pseudoprogression from true progression. TA may

provide useful prognostic information regarding progression and

survival in such a patient population. Grossmann et al41 found

that “information correlation,” a GLCM parameter, had a signif-

icantly higher score in patients on bevacizumab surviving beyond

3 months. Bahrami et al43 reported that lower edge contrast of the

FLAIR signal of gliomas correlated with poor survival after

bevacizumab.

Despite the heterogeneity of the data and software, most stud-

ies demonstrate the robustness of the MRTA and its clinical trans-

ferability for diagnostic use. Second-order statistical TA showed

promising results in most studies. Entropy also appears to be a key

feature. Quite possibly, multisequence-based MRTA may have

higher accuracy. However, it may be time-consuming, and not all

advanced sequences are widely available. Performing MRTA on

commonly available CE-MR imaging as well as T2-weighted/

FLAIR sequences may be optimal for standardization, given the

wide availability and promise shown in early studies. In studies

involving LGGs, it may be better to perform MRTA on T2-

weighted/FLAIR sequences because they better identify the tu-

mor. On the other hand, CE-MR imaging appears to be the single

best sequence in glioblastoma, as mentioned in a study by Liu

et al.44

Challenges and Future Directions
Despite the advantages, widespread clinical implementation of

MRTA is still limited, mostly due to nonuniformity and lack of

standardization and quantification processes. The real challenge

lies in the reproducibility and repeatability of these studies. Mul-

tiple studies used indigenous MRTA software, likely with varying

algorithms. Thus, studies differ not only in image acquisition but

also MRTA methodologies.

The other important aspect is use of a cancer imaging data

base, which may suffice for conventional multiparametric assess-

ment but nevertheless has considerable heterogeneity in se-

quences, protocols, and vendors. This is not confined just to the

cancer data base but is a practical consideration for any multi-

center study.

The impact of acquisition parameters on MRTA has been ad-

dressed in multiple studies. Ford et al,69 using a digital 3D phan-

tom, concluded that multiple texture features vary considerably

between T1-weighted images (spin-echo, gradient echo, gradient

recalled-echo, and inversion recovery) and T1 maps. They also

noted that TR/TE variations on T1WI and T2WI affect texture

features. Another phantom-based study by Buch et al12 assessed

the effect of magnet strength, flip angles, number of excitations,

and different scanner platforms and concluded that some texture

features are more robust (for example, except for histogram-re-

lated median, entropy, and GLCM contrast, all other histogram,

GLCM, GLRLM, gray-level gradient matrix, and Law features did

not show a significant difference from flip angles) and some are

more susceptible to acquisition parameters (all Law features were

significantly different for different magnetic strengths). Yang et

al70 found that different reconstruction algorithms, noise levels,

and parallel imaging acceleration factors can influence texture

parameters. Texture features are also affected by a number of coil

elements, coil arrangement, and k-space sampling.71 Rapid

k-space sampling techniques can reduce SNR, thus affecting TA,

especially histogram intensity-based features.12,71,72 The inclu-

sion of preprocessing steps may also affect texture features.

Mayerhoefer et al15 found zero-filling interpolation to be the

most optimal with an interpolation factor of 4 to improve texture

performance. Both Waugh et al72 and Mayerhoefer et al13 found

spatial resolution to be the most important factor affecting MRTA

and that variability in TR/TE, sampling bandwidth, and number

of excitations is not significant at higher resolution. However,

Molina et al73 found that several GLCM and GLRLM texture fea-

tures computed on 3D segmentation of brain gliomas were not

robust over different spatial resolution/matrix size and gray-level

ranges. They found only entropy to be the most robust feature.

For intensity normalization, Collewet et al74 found mean � 3 SDs

to be the most optimal strategy. Partial volume artifacts can be

corrected by iterative optimal thresholding algorithms.12

In terms of analysis, the choice between analyzing multiple-

versus-few sequences for MRTA also needs to be addressed. Spin-

echo sequences are often acquired routinely in suspected brain

tumor while advanced imaging may not be routinely performed,

especially on the index scan. TA-based conventional sequences
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seem more practical in terms of generalizability, with T1-CE–

based TA being the most optimal.

3D-TA appears more accurate than 2D, given the high spatial

resolution of the acquired data. Similarly, results based on a VOI

analysis appear more reliable than those based on a single slice

(also a prominent limitation of multiple prior studies).75 How-

ever, more studies are needed to further establish better accuracy

of 3D-MRTA and justify the additional time and effort.14

All these factors re-emphasize the need for standardization of

MR imaging protocols, including uniform postprocessing tech-

niques, to allow a more valid, multiple-institution comparison of

MRTA results.

Challenges in processing include the inhomogeneity of MRTA

software, which may be commercial, open-source, or developed

in-house. The superiority of one over the other remains specula-

tive at best.76 Future studies should assess the comparability and

accuracy of results across multiple types of software, especially in

terms of clinical outcomes, survival, and radiomic parameters, to

help with standardization. Finally, adequate training of radiolo-

gists is also required for consistent evaluation and implementa-

tion in routine workflow.

Another factor is the problem of the “huge data” that need

sorting to prevent redundancy. Several classifier models exist to

accurately predict the optimal texture feature. However, there is

no consensus as to whether one is superior to the others. Artificial

intelligence may be helpful in this case, both in feature selection

and building prediction models.

Additionally, even though MRTA has shown potential in neu-

roimaging, certain valid criticisms of this technique should also be

acknowledged. One major criticism of MRTA is that it is not

hypothesis-driven. In some ways, MRTA is essentially correlating

different mathematic computations with various imaging and

clinical parameters to see what is statistically significant. This is,

however, problematic for 2 main reasons: First, there is no intui-

tive reason why mathematic variables would make physiologic

sense. Whether these significant relationships are merely chance

findings secondary to overfitting (see next paragraph) or reflect

as-yet unexplored physiologic correlates currently remains un-

clear. Most interesting, some prior studies have shown correla-

tions between CT texture parameters and histologic markers such

as CD34 and Ki-67, findings that may support some tissue-level

basis for texture parameters.11 These, however, remain to be fully

determined and validated.

The other major limitation is the problem of overfitting,

which can occur when the number of independent parameters

being analyzed is larger than the number of data points/sample

size. Generally, it is recommended that the sample size be 5–10

times the number of analyzed variables, which is often not the

case, especially with studies using a smaller sample size. This issue

could be addressed through either larger datasets or analysis of

only a few preselected robust variables. Another way to avoid

overfitting is to split the data into 3 mutually exclusive sets, one

each for training, testing, and finally validation.

Finally, the role of MRTA should also be evaluated in the con-

text of deep learning and neural networks. Even though unsuper-

vised deep learning can self-identify features for itself and does

not need manual input (thereby reducing interobserver bias in

ROI selection) and feature selection,76 deep learning methods re-

quire higher processing powers and considerable high-quality

ground truth data. The insatiable appetite of deep learning for

large quantities of labeled training data (which are both expensive

and difficult to produce) is another limitation of the deep learning

approach.77 MRTA, on the other hand, is less data-hungry. Addi-

tionally, the internal algorithm feature vectors in unsupervised

deep learning may not always be apparent (black box), while TA

features can be explained more easily. However, ROI selection

bias among observers can influence MRTA results and should be

addressed prospectively.75 However, the 2 techniques may be

complementary in terms of optimal feature selection (in deep

learning) and ease of use for wider applicability (for MRTA),

thereby providing optimal output without substantial changes to

the clinical workflow.

CONCLUSIONS
MRTA has shown promising results in various glioma-related ap-

plications. The inclusion of tumor heterogeneity as a radiology-

reporting variable appears to break with the notion of radiology

being only diagnostic or qualitative and brings the shift toward

prognostic value as an imaging biomarker for precision/person-

alized medicine. However, before widespread clinical applicabil-

ity, prospective validation of accuracy, selection of robust se-

quences, interinstitutional congruity of results, and selection of

the best possible technique need to be addressed. Last, develop-

ment of automated segmentation tools with incorporation of ma-

chine learning is essential to expedite feature extraction and anal-

ysis, thus saving time and additional burden on the radiologist.
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bustness of textural measures obtained from 3D brain tumor
MRIs impose a need for standardization. PLoS One 2017;12:
e0178843 CrossRef Medline

74. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition
protocols and image intensity normalization methods on texture
classification. Magn Reson Imaging 2004;22:81–91 CrossRef Medline

75. Hainc N, Stippich C, Stieltjes B, et al. Experimental texture analysis
in glioblastoma: a methodological study. Invest Radiol 2017;52:
367–73 CrossRef Medline

76. Varghese BA, Cen SY, Hwang DH, et al. Texture analysis of imaging:
what radiologists need to know. AJR Am J Roentgenol 2019;212:
520 –28 CrossRef Medline

77. Suzuki K. Overview of deep learning in medical imaging. Radiol
Phys Technol 2017;10:257–73 CrossRef Medline

934 Soni Jun 2019 www.ajnr.org

http://dx.doi.org/10.1117/12.2254212
http://dx.doi.org/10.18632/oncotarget.17585
http://www.ncbi.nlm.nih.gov/pubmed/28526813
http://dx.doi.org/10.1038/s41598-017-13679-4
http://www.ncbi.nlm.nih.gov/pubmed/29042619
http://dx.doi.org/10.1007/s11060-018-2908-3
http://www.ncbi.nlm.nih.gov/pubmed/29860714
http://dx.doi.org/10.1007/s11548-017-1691-5
http://www.ncbi.nlm.nih.gov/pubmed/29270916
http://dx.doi.org/10.1016/j.clineuro.2017.12.007
http://www.ncbi.nlm.nih.gov/pubmed/29220731
http://dx.doi.org/10.1002/jmri.25896
http://www.ncbi.nlm.nih.gov/pubmed/29140606
http://dx.doi.org/10.1016/j.ejrad.2019.01.025
http://www.ncbi.nlm.nih.gov/pubmed/30777207
http://dx.doi.org/10.1007/s00330-017-5267-0
http://www.ncbi.nlm.nih.gov/pubmed/29404769
http://dx.doi.org/10.1007/s00330-017-4964-z
http://www.ncbi.nlm.nih.gov/pubmed/28755054
http://dx.doi.org/10.1016/j.nicl.2017.10.030
http://www.ncbi.nlm.nih.gov/pubmed/29527478
http://dx.doi.org/10.1007/s00330-018-5368-4
http://www.ncbi.nlm.nih.gov/pubmed/29626238
http://dx.doi.org/10.2463/mrms.mp.2017-0178
http://www.ncbi.nlm.nih.gov/pubmed/29769456
http://dx.doi.org/10.2463/mrms.mp.2017-0044
http://www.ncbi.nlm.nih.gov/pubmed/28638001
http://dx.doi.org/10.1016/j.clineuro.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/30092408
http://dx.doi.org/10.3174/ajnr.A5173
http://www.ncbi.nlm.nih.gov/pubmed/28450433
http://dx.doi.org/10.1097/RLI.0b013e3181893605
http://www.ncbi.nlm.nih.gov/pubmed/19002056
http://dx.doi.org/10.1371/journal.pone.0067610
http://www.ncbi.nlm.nih.gov/pubmed/23874432
http://dx.doi.org/10.1002/mp.12356
http://www.ncbi.nlm.nih.gov/pubmed/28543071
http://dx.doi.org/10.1177/0284185118780889
http://www.ncbi.nlm.nih.gov/pubmed/29860889
http://dx.doi.org/10.3174/ajnr.A5858
http://www.ncbi.nlm.nih.gov/pubmed/30385468
http://dx.doi.org/10.1155/2018/1729071
http://www.ncbi.nlm.nih.gov/pubmed/30154684
http://dx.doi.org/10.1016/j.ejmp.2018.05.017
http://www.ncbi.nlm.nih.gov/pubmed/29891091
http://www.ncbi.nlm.nih.gov/pubmed/22034056
http://dx.doi.org/10.1118/1.3622605
http://www.ncbi.nlm.nih.gov/pubmed/21978050
http://dx.doi.org/10.1371/journal.pone.0178843
http://www.ncbi.nlm.nih.gov/pubmed/28586353
http://dx.doi.org/10.1016/j.mri.2003.09.001
http://www.ncbi.nlm.nih.gov/pubmed/14972397
http://dx.doi.org/10.1097/RLI.0000000000000354
http://www.ncbi.nlm.nih.gov/pubmed/28230716
http://dx.doi.org/10.2214/AJR.18.20624
http://www.ncbi.nlm.nih.gov/pubmed/30645163
http://dx.doi.org/10.1007/s12194-017-0406-5
http://www.ncbi.nlm.nih.gov/pubmed/28689314

	Texture Analysis in Cerebral Gliomas: A Review of the Literature
	MRTA: Concepts and Methodology
	Types of TA
	MRTA Applications in Glioma Imaging
	Glioma Grading
	Glioma Survival Analysis
	Glioma Radiogenomics
	Miscellaneous Applications
	Challenges and Future Directions

	CONCLUSIONS
	REFERENCES

