Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low–Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors

K.M. Schmainda, M.A. Prah, L.S. Hu, C.C. Quarles, N. Semmineh, S.D. Rand, J.M. Connelly, B. Anderies, Y. Zhou, Y. Liu, B. Logan, A. Stokes, G. Baird and J.L. Boxerman
American Journal of Neuroradiology April 2019, 40 (4) 626-633; DOI: https://doi.org/10.3174/ajnr.A6015
K.M. Schmainda
aFrom the Departments of Biophysics (K.M.S., M.A.P.)
bRadiology (K.M.S., S.D.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.M. Schmainda
M.A. Prah
aFrom the Departments of Biophysics (K.M.S., M.A.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.A. Prah
L.S. Hu
eDepartments of Radiology (L.S.H., Y.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.S. Hu
C.C. Quarles
gDivision of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.C. Quarles
N. Semmineh
gDivision of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Semmineh
S.D. Rand
bRadiology (K.M.S., S.D.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.D. Rand
J.M. Connelly
cNeurology (J.M.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.M. Connelly
B. Anderies
fNeurosurgery (B.A.), Mayo Clinic, Scottsdale, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Anderies
Y. Zhou
eDepartments of Radiology (L.S.H., Y.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Zhou
Y. Liu
dDivision of Biostatistics, Institute for Health and Society (Y.L., B.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Liu
B. Logan
dDivision of Biostatistics, Institute for Health and Society (Y.L., B.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Logan
A. Stokes
gDivision of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Stokes
G. Baird
hDepartment of Diagnostic Imaging (J.L.B., G.B.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Baird
J.L. Boxerman
hDepartment of Diagnostic Imaging (J.L.B., G.B.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.L. Boxerman
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Donahue KM,
    2. Krouwer HGJ,
    3. Rand SD, et al
    . Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000;43:845–53 doi:10.1002/1522-2594(200006)43:6<845::AID-MRM10>3.0.CO;2-J pmid:10861879
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Schmainda KM,
    2. Rand SD,
    3. Joseph AM, et al
    . Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 2004;25:1524–32 pmid:15502131
    Abstract/FREE Full Text
  3. 3.↵
    1. Kong DS,
    2. Kim ST,
    3. Kim EH, et al
    . Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 2011;32:382–87 doi:10.3174/ajnr.A2286 pmid:21252041
    Abstract/FREE Full Text
  4. 4.↵
    1. Schmainda KM,
    2. Prah M,
    3. Connelly J, et al
    . Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol 2014;16:880–88 doi:10.1093/neuonc/not216 pmid:24431219
    CrossRefPubMed
  5. 5.↵
    1. Schmainda KM,
    2. Zhang Z,
    3. Prah M, et al
    . Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol 2015;17:1148–56 doi:10.1093/neuonc/nou364 pmid:25646027
    CrossRefPubMed
  6. 6.↵
    1. Kickingereder P,
    2. Wiestler B,
    3. Burth S, et al
    . Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro Oncol 2015;17:1139–47 doi:10.1093/neuonc/nov028 pmid:25754089
    CrossRefPubMed
  7. 7.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Heiserman JE, et al
    . Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol 2012;14:919–30 doi:10.1093/neuonc/nos112 pmid:22561797
    CrossRefPubMed
  8. 8.↵
    1. Prah MA,
    2. Al-Gizawiy MM,
    3. Mueller WM, et al
    . Spatial discrimination of glioblastoma and treatment effect with histologically-validated perfusion and diffusion magnetic resonance imaging metrics. J Neurooncol 2018;136:13–21 doi:10.1007/s11060-017-2617-3 pmid:28900832
    CrossRefPubMed
  9. 9.↵
    1. Paulson ES,
    2. Schmainda KM
    . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008;249:601–13 doi:10.1148/radiol.2492071659 pmid:18780827
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    Abstract/FREE Full Text
  11. 11.↵
    1. Hu LS,
    2. Baxter LC,
    3. Pinnaduwage DS, et al
    . Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol 2010;31:40–48 doi:10.3174/ajnr.A1787 pmid:19749223
    Abstract/FREE Full Text
  12. 12.↵
    1. Boxerman JL,
    2. Prah DE,
    3. Paulson ES, et al
    . The role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. AJNR Am J Neuroradiol 2012;33:1081–87 doi:10.3174/ajnr.A2934 pmid:22322605
    Abstract/FREE Full Text
  13. 13.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Rand SD, et al
    . Multisite concordance of DSC-MRI analysis for brain tumors: results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. AJNR Am J Neuroradiol 2018;39:1008–16 doi:10.3174/ajnr.A5675 pmid:29794239
    Abstract/FREE Full Text
  14. 14.↵
    1. Boxerman JL,
    2. Shiroishi MS,
    3. Ellingson BM, et al
    . Dynamic susceptibility contrast MR imaging in glioma: review of current clinical practice. Magn Reson Imaging Clin N Am 2016;24:649–70 doi:10.1016/j.mric.2016.06.005 pmid:27742108
    CrossRefPubMed
  15. 15.↵
    1. Ellingson BM,
    2. Bendszus M,
    3. Boxerman J, et al
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 2015;17:1188–98 doi:10.1093/neuonc/nov095 pmid:26250565
    CrossRefPubMed
  16. 16.↵
    1. Leu K,
    2. Boxerman JL,
    3. Ellingson BM
    . Effects of MRI protocol parameters, preload injection dose, fractionation strategies, and leakage correction algorithms on the fidelity of dynamic-susceptibility contrast MRI estimates of relative cerebral blood volume in gliomas. AJNR Am J Neuroradiol 2017;38:478–84 doi:10.3174/ajnr.A5027 pmid:28034995
    Abstract/FREE Full Text
  17. 17.↵
    1. Semmineh NB,
    2. Bell LC,
    3. Stokes AM, et al
    . Optimization of acquisition and analysis methods for clinical dynamic susceptibility contrast MRI using a population-based digital reference object. AJNR Am J Neuroradiol 2018;39:1981–88 doi:10.3174/ajnr.A5827 pmid:30309842
    Abstract/FREE Full Text
  18. 18.↵
    1. Bedekar D,
    2. Jensen TR,
    3. Schmainda KM
    . Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn Reson Med 2010;64:907–13 doi:10.1002/mrm.22445 pmid:20806381
    CrossRefPubMed
  19. 19.↵
    1. Nyúl LG,
    2. Udupa JK
    . On standardizing the MR image intensity scale. Magn Reson Med 1999;42:1072–81 doi:10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M pmid:10571928
    CrossRefPubMed
  20. 20.↵
    1. Prah MA,
    2. Stufflebeam SM,
    3. Paulson ES, et al
    . Repeatability of standardized and normalized relative CBV in patients with newly diagnosed glioblastoma. AJNR Am J Neuroradiol 2015;36:1654–61 doi:10.3174/ajnr.A4374 pmid:26066626
    Abstract/FREE Full Text
  21. 21.↵
    1. Bedekar D,
    2. Jensen T,
    3. Rand S, et al
    . Delta T1 Method: an automatic post-contrast RO1 selection technique for brain tumors. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Stockholm, Sweden. May 1–7, 2010
  22. 22.↵
    1. Altman DG
    . Practical Statistics for Medical Research. London: Chapman and Hall/CRC Texts in Statistical Science Series, Taylor & Francis; 1990
  23. 23.↵
    1. McBride GB
    . A proposal for strength-of-agreeement criteria for Lin's concordance correlation coefficient. NIWA Client Report: HAM2005–062 2005:62
  24. 24.↵
    1. Semmineh NB,
    2. Stokes AM,
    3. Bell LC, et al
    . A population-based digital reference object (DRO) for optimizing dynamic susceptibility contrast (DSC)-MRI methods for clinical trials. Tomography 2017;3:41–49 doi:10.18383/j.tom.2016.00286 pmid:28584878
    CrossRefPubMed
  25. 25.↵
    1. Oh J,
    2. Henry RG,
    3. Pirzkall A, et al
    . Survival analysis in patients with glioblastoma multiforme: predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. J Magn Reson Imaging 2004;19:546–54 doi:10.1002/jmri.20039 pmid:15112303
    CrossRefPubMed
  26. 26.↵
    1. Lev MH,
    2. Ozsunar Y,
    3. Henson JW, et al
    . Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 2004;25:214–21 pmid:14970020
    Abstract/FREE Full Text
  27. 27.↵
    1. Aronen HJ,
    2. Gazit IE,
    3. Louis DN, et al
    . Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994;191:41–51 doi:10.1148/radiology.191.1.8134596 pmid:8134596
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Schmiedeskamp H,
    2. Straka M,
    3. Newbould RD, et al
    . Combined spin- and gradient-echo perfusion-weighted imaging. Magn Reson Med 2012;68:30–40 doi:10.1002/mrm.23195 pmid:22114040
    CrossRefPubMed
  29. 29.↵
    1. Law M,
    2. Young RJ,
    3. Babb JS, et al
    . Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–98 doi:10.1148/radiol.2472070898 pmid:18349315
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Cha S,
    2. Lu S,
    3. Johnson G, et al
    . Dynamic susceptibility contrast MR imaging: correlation of signal intensity changes with cerebral blood volume measurements. J Magn Reson Imaging 2000;11:114–19 doi:10.1002/(SICI)1522-2586(200002)11:2<114::AID-JMRI6>3.0.CO;2-S pmid:10713942
    CrossRefPubMed
  31. 31.↵
    1. Harris RJ,
    2. Cloughesy TF,
    3. Hardy AJ, et al
    . MRI perfusion measurements calculated using advanced deconvolution techniques predict survival in recurrent glioblastoma treated with bevacizumab. J Neurooncol 2015;122:497–505 doi:10.1007/s11060-015-1755-8 pmid:25773062
    CrossRefPubMed
  32. 32.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Dueck AC, et al
    . Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 2012;33:69–76 doi:10.3174/ajnr.A2743 pmid:22095961
    Abstract/FREE Full Text
  33. 33.↵
    1. Surapaneni K,
    2. Kennedy BC,
    3. Yanagihara TK, et al
    . Early cerebral blood volume changes predict progression after convection-enhanced delivery of topotecan for recurrent malignant glioma. World Neurosurg 2015;84:163–72 doi:10.1016/j.wneu.2015.03.008 pmid:25772608
    CrossRefPubMed
  34. 34.↵
    1. Mangla R,
    2. Singh G,
    3. Ziegelitz D, et al
    . Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 2010;256:575–84 doi:10.1148/radiol.10091440 pmid:20529987
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Prince MR,
    2. Zhang HL,
    3. Roditi GH, et al
    . Risk factors for NSF: a literature review. J Magn Reson Imaging 2009;30:1298–308 doi:10.1002/jmri.21973 pmid:19937930
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. McDonald RJ,
    2. McDonald JS,
    3. Kallmes DF, et al
    . Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015;275:772–82 doi:10.1148/radiol.15150025 pmid:25742194
    CrossRefPubMed
  37. 37.↵
    1. Cha S
    . Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am 2003;11:403–13 doi:10.1016/S1064-9689(03)00066-7 pmid:14768726
    CrossRefPubMed
  38. 38.↵
    1. Law M,
    2. Cha S,
    3. Knopp EA, et al
    . High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002;222:715–21 doi:10.1148/radiol.2223010558 pmid:11867790
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Law M,
    2. Oh S,
    3. Babb J, et al
    . Cerebral blood volume predicts patient outcome better than histopathology in low-grade gliomas using dynamic susceptibility contrast-perfusion MR imaging. In: Proceedings of the Annual Meeting of the American Society of Neuroradiology, Toronto, Ontario, Canada. May 23–27, 2005:488
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 40 (4)
American Journal of Neuroradiology
Vol. 40, Issue 4
1 Apr 2019
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low–Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K.M. Schmainda, M.A. Prah, L.S. Hu, C.C. Quarles, N. Semmineh, S.D. Rand, J.M. Connelly, B. Anderies, Y. Zhou, Y. Liu, B. Logan, A. Stokes, G. Baird, J.L. Boxerman
Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low–Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors
American Journal of Neuroradiology Apr 2019, 40 (4) 626-633; DOI: 10.3174/ajnr.A6015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low–Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors
K.M. Schmainda, M.A. Prah, L.S. Hu, C.C. Quarles, N. Semmineh, S.D. Rand, J.M. Connelly, B. Anderies, Y. Zhou, Y. Liu, B. Logan, A. Stokes, G. Baird, J.L. Boxerman
American Journal of Neuroradiology Apr 2019, 40 (4) 626-633; DOI: 10.3174/ajnr.A6015
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol
  • "Synthetic" DSC Perfusion MRI with Adjustable Acquisition Parameters in Brain Tumors Using Dynamic Spin-and-Gradient-Echo Echoplanar Imaging
  • Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
  • Arterial Spin-Labeling and DSC Perfusion Metrics Improve Agreement in Neuroradiologists Clinical Interpretations of Posttreatment High-Grade Glioma Surveillance MR Imaging--An Institutional Experience
  • The Choroid Plexus as an Alternative Locus for the Identification of the Arterial Input Function for Calculating Cerebral Perfusion Metrics Using MRI
  • DSC Perfusion MRI-Derived Fractional Tumor Burden and Relative CBV Differentiate Tumor Progression and Radiation Necrosis in Brain Metastases Treated with Stereotactic Radiosurgery
  • Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies
  • Perfusion MRI-Based Fractional Tumor Burden Differentiates between Tumor and Treatment Effect in Recurrent Glioblastomas and Informs Clinical Decision-Making
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Cerebral ADC Changes in Fabry Disease
  • ML for Glioma Molecular Subtype Prediction
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire