Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleFunctional

Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography

S.S. Grewal, V.M. Holanda and E.H. Middlebrooks
American Journal of Neuroradiology November 2018, 39 (11) 2120-2125; DOI: https://doi.org/10.3174/ajnr.A5816
S.S. Grewal
aFrom the Departments of Neurosurgery (S.S.G., E.H.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.S. Grewal
V.M. Holanda
cCenter of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V.M. Holanda
E.H. Middlebrooks
aFrom the Departments of Neurosurgery (S.S.G., E.H.M.)
bRadiology (E.H.M.), Mayo Clinic, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.H. Middlebrooks
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Hegeman DJ,
    2. Hong ES,
    3. Hernández VM, et al
    . The external globus pallidus: progress and perspectives. Eur J Neurosci 2016;43:1239–65 doi:10.1111/ejn.13196 pmid:26841063
    CrossRefPubMed
  2. 2.↵
    1. Mouton S,
    2. Xie-Brustolin J,
    3. Mertens P, et al
    . Chorea induced by globus pallidus externus stimulation in a dystonic patient. Mov Disord 2006;21:1771–73 doi:10.1002/mds.21047 pmid:16856144
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. François C,
    2. Grabli D,
    3. McCairn K, et al
    . Behavioural disorders induced by external globus pallidus dysfunction in primates, II: anatomical study. Brain 2004;127:2055–70 doi:10.1093/brain/awh239 pmid:15292054
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Grabli D,
    2. McCairn K,
    3. Hirsch EC, et al
    . Behavioural disorders induced by external globus pallidus dysfunction in primates, I: behavioural study. Brain 2004;127:2039–54 doi:10.1093/brain/awh220 pmid:15292053
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Gittis AH,
    2. Berke JD,
    3. Bevan MD, et al
    . New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci 2014;34:15178–83 doi:10.1523/JNEUROSCI.3252-14.2014 pmid:25392486
    Abstract/FREE Full Text
  6. 6.↵
    1. Filion M,
    2. Tremblay L
    . Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 1991;547:142–51 pmid:1677607
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Stoessl AJ,
    2. Lehericy S,
    3. Strafella AP
    . Imaging insights into basal ganglia function, Parkinson's disease, and dystonia. Lancet 2014;384:532–44 doi:10.1016/S0140-6736(14)60041-6 pmid:24954673
    CrossRefPubMed
  8. 8.↵
    1. Starr PA,
    2. Kang GA,
    3. Heath S, et al
    . Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway. Exp Neurol 2008;211:227–33 doi:10.1016/j.expneurol.2008.01.023 pmid:18342309
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Starr PA,
    2. Rau GM,
    3. Davis V, et al
    . Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. J Neurophysiol 2005;93:3165–76 doi:10.1152/jn.00971.2004 pmid:15703229
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Nambu A,
    2. Chiken S,
    3. Shashidharan P, et al
    . Reduced pallidal output causes dystonia. Front Syst Neurosci 2011;5:89 doi:10.3389/fnsys.2011.00089 pmid:22164134
    CrossRefPubMed
  11. 11.↵
    1. Silberstein P,
    2. Kühn AA,
    3. Kupsch A, et al
    . Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. Brain 2003;126:2597–608 doi:10.1093/brain/awg267 pmid:12937079
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Albin RL,
    2. Young AB,
    3. Penney JB
    . The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366–75 doi:10.1016/0166-2236(89)90074-X pmid:2479133
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. DeLong MR
    . Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281–85 doi:10.1016/0166-2236(90)90110-V pmid:1695404
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Brunenberg EJ,
    2. Moeskops P,
    3. Backes WH, et al
    . Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PLoS One 2012;7:e39061 doi:10.1371/journal.pone.0039061 pmid:22768059
    CrossRefPubMed
  15. 15.↵
    1. Forstmann BU,
    2. Keuken MC,
    3. Jahfari S, et al
    . Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response. Neuroimage 2012;60:370–75 doi:10.1016/j.neuroimage.2011.12.044 pmid:22227131
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Nambu A,
    2. Tokuno H,
    3. Takada M
    . Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 2002;43:111–17 doi:10.1016/S0168-0102(02)00027-5 pmid:12067746
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Cacciola A,
    2. Calamuneri A,
    3. Milardi D, et al
    . A connectomic analysis of the human basal ganglia network. Front Neuroanat 2017;11:85 doi:10.3389/fnana.2017.00085 pmid:29018335
    CrossRefPubMed
  18. 18.↵
    1. Chen MC,
    2. Ferrari L,
    3. Sacchet MD, et al
    . Identification of a direct GABAergic pallidocortical pathway in rodents. Eur J Neurosci 2015;41:748–59 doi:10.1111/ejn.12822 pmid:25581560
    CrossRefPubMed
  19. 19.↵
    1. Milardi D,
    2. Gaeta M,
    3. Marino S, et al
    . Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord 2015;30:342–49 doi:10.1002/mds.25995 pmid:25156805
    CrossRefPubMed
  20. 20.↵
    1. Naito A,
    2. Kita H
    . The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 1994;653:251–57 doi:10.1016/0006-8993(94)90397-2 pmid:7526961
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Saunders A,
    2. Oldenburg IA,
    3. Berezovskii VK, et al
    . A direct GABAergic output from the basal ganglia to frontal cortex. Nature 2015;521:85–89 doi:10.1038/nature14179 pmid:25739505
    CrossRefPubMed
  22. 22.↵
    1. Neumann WJ,
    2. Jha A,
    3. Bock A, et al
    . Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain 2015;138:1894–906 doi:10.1093/brain/awv109 pmid:25935723
    CrossRefPubMed
  23. 23.↵
    1. Hoover JE,
    2. Strick PL
    . Multiple output channels in the basal ganglia. Science 1993;259:819–21 doi:10.1126/science.7679223 pmid:7679223
    Abstract/FREE Full Text
  24. 24.↵
    1. Glasser MF,
    2. Sotiropoulos SN,
    3. Wilson JA, et al
    ; WU-Minn HCP Consortium. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 2013;80:105–24 doi:10.1016/j.neuroimage.2013.04.127 pmid:23668970
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Desikan RS,
    2. Ségonne F,
    3. Fischl B, et al
    . An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–80 doi:10.1016/j.neuroimage.2006.01.021 pmid:16530430
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Prodoehl J,
    2. Yu H,
    3. Little DM, et al
    . Region of interest template for the human basal ganglia: comparing EPI and standardized space approaches. Neuroimage 2008;39:956–65 doi:10.1016/j.neuroimage.2007.09.027 pmid:17988895
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Hagmann P,
    2. Cammoun L,
    3. Gigandet X, et al
    . Mapping the structural core of human cerebral cortex. PLoS Biol 2008;6:e159 doi:10.1371/journal.pbio.0060159 pmid:18597554
    CrossRefPubMed
  28. 28.↵
    1. van Wijk BC,
    2. Stam CJ,
    3. Daffertshofer A
    . Comparing brain networks of different size and connectivity density using graph theory. PLoS One 2010;5:e13701 doi:10.1371/journal.pone.0013701 pmid:21060892
    CrossRefPubMed
  29. 29.↵
    1. Leichnetz GR,
    2. Astruc J
    . The course of some prefrontal corticofugals to the pallidum, substantia innominata, and amygdaloid complex in monkeys. Exp Neurol 1977;54:104–09 doi:10.1016/0014-4886(77)90238-2 pmid:401742
    CrossRefPubMed
  30. 30.↵
    1. Koechlin E,
    2. Hyafil A
    . Anterior prefrontal function and the limits of human decision-making. Science 2007;318:594–98 doi:10.1126/science.1142995 pmid:17962551
    Abstract/FREE Full Text
  31. 31.↵
    1. Corbetta M,
    2. Miezin FM,
    3. Dobmeyer S, et al
    . Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 1991;11:2383–402 doi:10.1523/JNEUROSCI.11-08-02383.1991 pmid:1869921
    Abstract/FREE Full Text
  32. 32.↵
    1. Boussaoud D
    . Attention versus intention in the primate premotor cortex. Neuroimage 2001;14:S40–45 doi:10.1006/nimg.2001.0816 pmid:11373131
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Takada M,
    2. Tokuno H,
    3. Hamada I, et al
    . Organization of inputs from cingulate motor areas to basal ganglia in macaque monkey. Eur J Neurosci 2001;14:1633–50 doi:10.1046/j.0953-816x.2001.01789.x pmid:11860458
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Chikama M,
    2. McFarland NR,
    3. Amaral DG, et al
    . Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 1997;17:9686–705 doi:10.1523/JNEUROSCI.17-24-09686.1997 pmid:9391023
    Abstract/FREE Full Text
  35. 35.↵
    1. Haber SN,
    2. Kunishio K,
    3. Mizobuchi M, et al
    . The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 1995;15:4851–67 doi:10.1523/JNEUROSCI.15-07-04851.1995 pmid:7623116
    Abstract/FREE Full Text
  36. 36.↵
    1. Kunishio K,
    2. Haber SN
    . Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 1994;350:337–56 doi:10.1002/cne.903500302 pmid:7533796
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Ferry AT,
    2. Ongür D,
    3. An X, et al
    . Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 2000;425:447–70 doi:10.1002/1096-9861(20000925)425:3<447::AID-CNE9>3.0.CO%3B2-V pmid:10972944
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Friedman DP,
    2. Aggleton JP,
    3. Saunders RC
    . Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 2002;450:345–65 doi:10.1002/cne.10336 pmid:12209848
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Russchen FT,
    2. Bakst I,
    3. Amaral DG, et al
    . The amygdalostriatal projections in the monkey: an anterograde tracing study. Brain Res 1985;329:241–57 doi:10.1016/0006-8993(85)90530-X pmid:3978445
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Fudge JL,
    2. Haber SN
    . Defining the caudal ventral striatum in primates: cellular and histochemical features. J Neurosci 2002;22:10078–82 doi:10.1523/JNEUROSCI.22-23-10078.2002 pmid:12451107
    Abstract/FREE Full Text
  41. 41.↵
    1. Laplane D,
    2. Baulac M,
    3. Widlöcher D, et al
    . Pure psychic akinesia with bilateral lesions of basal ganglia. J Neurol Neurosurg Psychiatry 1984;47:377–85 doi:10.1136/jnnp.47.4.377 pmid:6726263
    Abstract/FREE Full Text
  42. 42.↵
    1. Laplane D,
    2. Levasseur M,
    3. Pillon B, et al
    . Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions: a neuropsychological, magnetic resonance imaging and positron tomography study. Brain 1989;112(Pt 3):699–725 doi:10.1093/brain/112.3.699 pmid:2786440
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Filho OV,
    2. Ragazzo PC,
    3. Silva DJ, et al
    . Bilateral globus pallidus externus deep brain stimulation (GPe-DBS) for the treatment of Tourette syndrome: an ongoing prospective controlled study. Stereotact Funct Neurosurg 2007;85:42–43 doi:10.1159/000097756
    CrossRef
  44. 44.↵
    1. Piedimonte F,
    2. Andreani JC,
    3. Piedimonte L, et al
    . Behavioral and motor improvement after deep brain stimulation of the globus pallidus externus in a case of Tourette's syndrome. Neuromodulation 2013;16:55–58; discussion 58 doi:10.1111/j.1525-1403.2012.00526.x pmid:23240689
    CrossRefPubMed
  45. 45.↵
    1. Singh-Bains MK,
    2. Waldvogel HJ,
    3. Faull RL
    . The role of the human globus pallidus in Huntington's disease. Brain Pathol 2016;26:741–51 doi:10.1111/bpa.12429 pmid:27529459
    CrossRefPubMed
  46. 46.↵
    1. Vitek JL,
    2. Zhang J,
    3. Hashimoto T, et al
    . External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network. Exp Neurol 2012;233:581–86 doi:10.1016/j.expneurol.2011.09.031 pmid:22001773
    CrossRefPubMed
  47. 47.↵
    1. Houeto JL,
    2. Yelnik J,
    3. Bardinet E, et al
    ; French Stimulation du Pallidum Interne dans la Dystonie Study Group. Acute deep-brain stimulation of the internal and external globus pallidus in primary dystonia: functional mapping of the pallidum. Arch Neurol 2007;64:1281–86 doi:10.1001/archneur.64.9.1281 pmid:17846266
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Chung HW,
    2. Chou MC,
    3. Chen CY
    . Principles and limitations of computational algorithms in clinical diffusion tensor MR tractography. AJNR Am J Neuroradiol 2011;32:3–13 doi:10.3174/ajnr.A2041 pmid:20299436
    Abstract/FREE Full Text
  49. 49.↵
    1. Parker GD,
    2. Marshall D,
    3. Rosin PL, et al
    . A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data. Neuroimage 2013;65:433–48 doi:10.1016/j.neuroimage.2012.10.022 pmid:23085109
    CrossRefPubMed
  50. 50.↵
    1. Maier-Hein KH,
    2. Neher PF,
    3. Houde JC, et al
    . The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 2017;8:1349 doi:10.1038/s41467-017-01285-x pmid:29116093
    CrossRefPubMed
  51. 51.↵
    1. Schlaier JR,
    2. Beer AL,
    3. Faltermeier R, et al
    . Probabilistic vs. deterministic fiber tracking and the influence of different seed regions to delineate cerebellar-thalamic fibers in deep brain stimulation. Eur J Neurosci 2017;45:1623–33 doi:10.1111/ejn.13575 pmid:28391647
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (11)
American Journal of Neuroradiology
Vol. 39, Issue 11
1 Nov 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
S.S. Grewal, V.M. Holanda, E.H. Middlebrooks
Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography
American Journal of Neuroradiology Nov 2018, 39 (11) 2120-2125; DOI: 10.3174/ajnr.A5816

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography
S.S. Grewal, V.M. Holanda, E.H. Middlebrooks
American Journal of Neuroradiology Nov 2018, 39 (11) 2120-2125; DOI: 10.3174/ajnr.A5816
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
  • Functional and Structural Connectivity Patterns Associated with Clinical Outcomes in Deep Brain Stimulation of the Globus Pallidus Internus for Generalized Dystonia
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Perifocal Edema in Meningiomas&Brain Connectivity
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire