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Corticopallidal Connectome of the Globus Pallidus Externus in
Humans: An Exploratory Study of Structural Connectivity

Using Probabilistic Diffusion Tractography
X S.S. Grewal, X V.M. Holanda, and X E.H. Middlebrooks

ABSTRACT

BACKGROUND AND PURPOSE: Electrophysiologic abnormalities of the globus pallidus externus have been shown in several disease
processes including Parkinson disease, dystonia, and Huntington disease. However, the connectivity, nuclear structure, and function of the
globus pallidus externus are still not well-understood. Increasing evidence for the existence of direct corticopallidal connections chal-
lenges traditional understanding of the connectivity of the globus pallidus externus; nevertheless, these corticopallidal connections have
yet to be fully characterized in humans. The objective of this study was to assess the corticopallidal connections of the globus pallidus
externus by means of probabilistic diffusion-weighted MR imaging tractography using high-resolution, multishell data.

MATERIALS AND METHODS: Imaging data from the open-access Human Connectome Project data base were used to perform proba-
bilistic tractography between the globus pallidus externus and the cerebral cortex using 34 distinct cortical regions. Group averages were
calculated for normalized percentages of tracts reaching each of the cortical targets, and side-to-side comparison was made.

RESULTS: Cortical connectivity was demonstrated between the globus pallidus externus and multiple cortical regions, including direct
connection to putative sensorimotor, associative, and limbic areas. Connectivity patterns were not significantly different between the
right and left hemispheres with the exception of the frontal pole, which showed a greater number of connections on the right (P � .004).

CONCLUSIONS: Our in vivo study of the human globus pallidus externus using probabilistic tractography supports the existence of
extensive corticopallidal connections and a tripartite functional division, as found in animal studies. A better understanding of the
connectivity of the globus pallidus externus may help to understand its function and elucidate the effects of programming the higher
contacts in pallidal deep brain stimulation.

ABBREVIATIONS: DBS � deep brain stimulation; GPe � globus pallidus externus

The globus pallidus externus (GPe) is the lateral component of

the globus pallidus known to have extensive connections with

other basal ganglia nuclei.1 Traditionally thought to primarily

function in motor control,2 more recent evidence has challenged

this belief, showing additional function in associative and limbic

processes.3-5 GPe dysfunction has been shown in several disease

processes, including a decreased spontaneous discharge rate in

Parkinson disease6 and dystonia7 and an increased spontaneous

discharge rate in Huntington disease.8 These findings suggest an

important role of the GPe in the pathophysiology of several dis-

ease processes and a potential clinical relevance.9,10

In 2003, Silberstein et al11 showed that the local field potentials

recorded in the globus pallidus externus in patients who under-

went deep brain stimulation (DBS) were greater in patients with

Parkinson disease (11–30 Hz) than in those with dystonia (4 –10

Hz). This finding indicated the importance of understanding the

GPe connections to help in elucidating the mechanistic basis of

DBS when treating these diseases. Fifteen years later, the connec-

tivity, nuclear structure, and function of the GPe are still not

well-understood.1,5

Traditionally, the basal ganglia circuitry has been thought to

involve 2 pathways, a “direct” and an “indirect” pathway, with the

striatum being the main input source for cortical efferents.12,13

Nevertheless, this model was challenged with the postulation of a

“hyperdirect” pathway, connecting the subthalamic nucleus to
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the cortex.14-16 Subsequently, there was increasing work in both

animal and in vivo human models highlighting the existence of

direct corticopallidal connections; however, these corticopallidal

connections specific to the globus pallidus externus have yet to be

fully characterized in humans.17-23 The objective of this study

was to assess corticopallidal connections of the GPe by means of

probabilistic diffusion-weighted MR imaging tractography, using

high-resolution, multishell data.

MATERIALS AND METHODS
Data Acquisition
Imaging data from the open-access Human Connectome Project

data base were used (https://www.humanconnectome.org).

Twenty healthy subjects were consecutively selected from the data

base. Full imaging acquisition details are freely available at the

Human Connectome Project data base Web site (https://

www.humanconnectome.org), but briefly, the imaging was ob-

tained using a modified 3T Magnetom Skyra scanner (Siemens,

Erlanger, Germany). The multidirection diffusion-weighted im-

aging used a spin-echo EPI sequence with an isotropic resolution

of 1.25 mm3. Diffusion b-values were acquired at 1000, 2000, and

3000 s/mm2 in 90 diffusion directions for each shell. A multiband

factor of 3 with 6/8 phase partial Fourier was used, and 111 axial

slices were obtained with no gap. The parameters were the follow-

ing: TR � 5520 ms, TE � 89.5 ms, flip angle � 78°. Images were

obtained in both the left-to-right and right-to-left phase-encod-

ing directions. Total imaging time for the diffusion data was 59

minutes. The T1-weighted 3D MPRAGE structural scan used an

isotropic resolution of 0.7 mm3. Additional acquisition parame-

ters included the following: TR � 2400 ms, TE � 2.14 ms, TI �

1000 ms, flip angle � 8°, generalized autocalibrating partially par-

allel acquisition � 2, and bandwidth � 210 Hz/Px for an acqui-

sition time of 7 minutes and 40 seconds.

Preprocessing of the diffusion data included realignment, B0

image-intensity normalization, EPI distortion correction with

the FSL Topup algorithm (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

topup), gradient nonlinearity correction, and eddy current cor-

rection.24 The diffusion data were co-registered to the structural

MPRAGE images using a boundary-based registration method

(BBR) implemented in the FMRIB Linear Registration Tool

(FLIRT; http://www.fmrib.ox.ac.uk/fslwiki/FLIRT) followed by

the “bbregister” function in FreeSurfer (https://surfer.nmr.mgh.

harvard.edu). All preprocessing steps used standard options as

detailed in the Human Connectome Project data base preprocess-

ing pipeline.24

Data Processing
Segmentation of the MPRAGE data was performed with Free-

Surfer (https://surfer.nmr.mgh.harvard.edu). The left and right

cerebral cortices were segmented into 34 distinct volumes of in-

terest in FreeSurfer based on the Desikan-Killiany cortical atlas

using the FreeSurfer mri_label2vol function.25 VOIs were also

generated of the right and left GPe in the Montreal Neurological

Institute template space from the Montreal Neurological Institute

Basal Ganglia Human Area Template.26 The GPe VOIs were then

transformed from Montreal Neurological Institute space to Free-

Surfer space using a linear registration implemented in FSL

FLIRT.

Voxelwise diffusion parameters were estimated via a Markov

Chain Monte Carlo sampling implemented in FSL bedpost

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#BEDPOSTX).

A multifiber approach (2 fiber orientations) was used along with a

multishell model. Next, probabilistic tractography was performed

using the FSL probtrackx2 function (https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/FDT/UserGuide) with the network option to estimate

the connectivity between each GPe VOI and the 34 ipsilateral

cortical targets. Standard tracking parameters include a 0.2 cur-

vature threshold, 2000 steps per sample, a step length of 0.5 mm,

and 5000 samples per side.

Data Analysis
For each subject, the weighted connectivity was calculated be-

tween each of the 34 cortical ROIs and the ipsilateral GPe ROI by

means of bidirectional fiber tracking between the GPe ROIs and

each cortical target ROI. Because the distance traveled has a pos-

itive correlation with fiber-tract uncertainty, the tracts were nor-

malized by the distance traveled, as implemented in FSL prob-

trackx2. To account for potential tracking bias due to variable

sizes of the ROIs, we normalized the connectivity matrix by the

surface area of the ROIs according to the method proposed by

Hagmann et al.27 The number of paths was normalized among all

patients by dividing the total number of paths by the waytotal for

each subject to facilitate between-subject comparison. Group av-

erages were calculated for normalized percentages of tracts reach-

ing each of the cortical targets. In an attempt to account for false

fibers generated by probabilistic tractography, a normalized fiber

threshold level was set to exclude all target VOIs. Appropriate

threshold levels remain a point of contention in the literature;

therefore, we have selected a probabilistic threshold that is in the

range of that used in prior studies of �2% of the total (98%

confidence level) in either hemisphere.17,28 The VOIs exceeding

the threshold were used to generate a connectogram for both the

left and right GPe in Matlab 9.1 (MathWorks, Natick, Massachu-

setts). Last, differences between the connectivity profile of the left

and right GPe were assessed for each cortical target in GraphPad

Prism 7.0 software (GraphPad Software, San Diego, California)

by means of a Mann-Whitney U test to account for non-normal-

ity in distribution.

RESULTS
Of the 34 cortical targets evaluated (Table), 17 exceeded the fiber

count threshold on either side (Figure). The right GPe exhibited

maximal cortical connectivity to the frontal pole (14.4% � 9.4%),

and the left GPe had maximal cortical connectivity to the tempo-

ral pole (10.5% � 8.0%). The greatest difference in the con-

nectivity profile between sides was related to the frontal pole

(14.4% � 9.4% on the right and 7.7% � 5.4% on the left), insula

(11.0% � 4.2% on the right and 8.5% � 4.6% on the left), and

entorhinal cortex (5.1% � 4.4% on the right and 7.4% � 6.6% on

the left). The side-to-side variation was also only significant for

the frontal pole (P � .004). The remaining targets showed no

significant variation between sides (P � .05).
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DISCUSSION
Our probabilistic tractography study highlights the potential

widespread direct cortical connectivity of the GPe. As predicted

from prior animal functional studies, direct cortical connections

were found between the GPe and areas functioning in sensorimo-

tor, associative, and limbic tasks.3,4 These direct corticopallidal

connections challenge the traditional hypotheses regarding the

GPe as merely a subcortical relay within the indirect pathway of

the basal ganglia.1

Initial descriptions of basal ganglia connectivity were largely

based on the work of DeLong13 and Albin et al12, elucidated

through a combination of both immunohistochemistry and in

situ hybridization techniques.12,13 These models defined 2 corti-

cofugal networks, a direct and indirect pathway of basal ganglia

circuitry, and considered the dorsal striatum as the main input

area for cortical efferent neurons to these pathways.12 More re-

cently, a third network, a hyperdirect pathway, has been discov-

ered in which glutamatergic cortical efferents synapse directly on

the subthalamic nucleus.16 The existence of this hyperdirect path-

way challenged the traditional hypotheses of basal ganglia con-

nectivity. Indeed, evidence has mounted for additional subpopu-

lations of efferent neurons with direct cortical connection to basal

ganglia nuclei outside the dorsal striatum, including the GPe.17-23

Direct cortical connection to the GPe was described as early as

1977 in primates.29 It was again described in an anterograde trac-

ing study in rodents, linking the precentral cortex of rodents to

the GPe.20 Additional studies have also described both cholinergic

and GABAergic neurons within the GPe, sending direct efferent

connections to the cortex.18,21 One in vivo human study used

constrained spherical deconvolution to assess the existence of a

corticopallidal network with connections from the GP to Brod-

mann areas 2, 11, 46, 48, 6, 4, and 5; however, distribution of fiber

densities between areas was not assessed.19 Using a similar tech-

nique, Cacciola et al17 described 2 separate corticopallidal net-

works: an anatomic pallidal-temporal network involving the hip-

pocampus and amygdala and a sensorimotor-pallidal network

mainly involving the precentral, postcentral, and paracentral gyri,

in addition to higher order functional areas, such as the superior

frontal gyrus. Unfortunately, due to

grouping the GPe and globus pallidus

internus as 1 ROI (pallidum), it is uncer-

tain how the GPe and globus pallidus in-

ternus connectivity profiles differ.17 Our

current study clarifies the distribution

and density of corticopallidal connec-

tions specifically to the GPe.

The GPe is classically considered as

part of the indirect pathway and exten-

sively connected to deep brain struc-

tures.1,13 Animal studies of bicuculline

injections into various regions of the

GPe have elicited behavioral distur-

bances that can be functionally seg-

mented into 3 zones: the ventrolateral

“sensorimotor territory,” the middle

“associative territory,” and the anterior

ventral “limbic territory.”3,4 To assess

the potential role of direct corticopalli-

dal connections in these functional areas, prior studies used rabies

virus injections to trace these potential connections.3,4 An injec-

tion into the limbic GPe labeled areas with known cortical projec-

tions: the rostromedial prefrontal cortex, insula, and orbitofron-

tal cortex, among others.3,4 Injection in the associative GPe

labeled areas with known cortical projections to the supplemen-

tary motor area and pre-supplementary motor area as well as the

associative parietal, motor, and premotor cortices. Finally, injec-

tion into the sensorimotor GPe labeled areas with known cortical

projections to the premotor, primary motor, and somatosensory

cortices.3,4

In line with these animal studies, we were able to illustrate GPe

direct cortical connectivity to similar putative associative, senso-

rimotor, and limbic areas.3,4 Direct cortical connections corre-

sponding to the limbic GPe include the rostral middle frontal

region (presumed dorsolateral prefrontal cortex), entorhinal cor-

tex, parahippocampal gyrus, isthmus of the cingulate cortex, in-

sula, and orbitofrontal cortex.3,4 Likewise, associative connec-

tions to the supplementary motor area/pre-supplementary motor

area regions, superior parietal cortex, primary motor cortex, and

premotor cortex were found. Last, as suggested by the sensori-

motor function, we found corticopallidal connections between

the GPe and the premotor, primary motor, and somatosensory

cortices.

Animal studies have revealed attention deficits and hyperac-

tivity induced by regional damage to the GPe, raising the possi-

bility of a GPe role in the symptoms of attention deficit/hyperac-

tivity disorder.3,4 The symptomatology of attention deficit/

hyperactivity disorder would suggest dysfunction in attention

processing as well as motor planning. Although the role of the

frontal pole is not well-understood, it has been implicated in the

process of managing multiple cognitive tasks and attention.30

Spatial attention has also been attributed to function within the

premotor and dorsolateral prefrontal cortices.31,32 Additionally,

the rostral cingulate and supplementary motor area, both show-

ing GPe connectivity in our study, have been implicated in the

hyperactive symptoms seen in attention deficit/hyperactivity dis-

Cortical ROIs meeting the tract threshold for connectivity to the globus pallidus externus
for both hemispheresa

Cortical Region
Right Hemisphere

(% Tract Probability) (SD)
Left Hemisphere

(% Tract Probability) (SD) P Value
Frontal pole 14.4% (9.4%) 7.7% (5.4%) .004
Insula 11.0% (4.2%) 8.5% (4.6%) .1
Temporal pole 9.2% (7.7%) 10.5% (8.0%) .49
Medial orbitofrontal 6.7% (5.9%) 8.3% (4.9%) .21
Entorhinal 5.1% (4.4%) 7.4% (6.6%) .22
Superior frontal 4.3% (3.5%) 4.8% (3.2%) .56
Pars orbitalis 3.8% (2.6%) 3.2% (2.6%) .4
Lateral orbitofrontal 3.8% (3.9%) 4.1% (3.9%) .72
Paracentral 3.4% (2.9%) 3.9% (2.9%) .5
Postcentral 3.2% (2.2%) 4.3% (2.2%) .1
Pars triangularis 3.1% (4.1%) 3.2% (3.7%) .96
Precentral 2.9% (1.9%) 4.4% (2.5%) .07
Rostral anterior cingulate 2.7% (2.8%) 1.2% (1.2%) .06
Superior parietal 2.3% (1.3%) 2.9% (1.2%) .1
Rostral middle frontal 2.3% (1.4%) 2.0% (1.2%) .83
Isthmus cingulate 2.2% (1.2%) 3.5% (3.2%) .27
Parahippocampal 1.4% (1.2%) 2.1% (1.5%) .12

a The P value is reported for left-to-right tract comparison.
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order.33 Taken together, the connectivity between the GPe and

these cortical regions in our study would corroborate the atten-

tion and hyperactivity symptoms elicited in animal studies of the

GPe.3,4

Animal studies have also implicated the GPe in movement

symptoms, such as dyskinesia, as well as stereotyped behavioral

symptoms. Although they are not fully understood, it has been

suggested that the ventral pallidum and striatal projections to the

orbitofrontal cortex, insula, anterior cingulate, and amygdalohip-

pocampal complex (regions functioning in the processing of

motivation and emotion) may facilitate such behavioral symp-

toms.3,34-40 In addition to these known projections from other

portions of the striatum, our study suggests the existence of direct

corticopallidal connections originating from the GPe to similar

regions, which could also contribute to the behaviors observed in

obsessive-compulsive disorder and Tourette syndrome. Support

that these symptoms are also mediated through the GPe includes

reports that pallidal lesions can result in obsessive-compulsive-

type behavior.41,42 Additionally, DBS of the GPe has been shown

to reduce tics in patients with Tourette syndrome.43,44

Broad connectivity of the GPe to primary and secondary sen-

sorimotor regions, including the superior frontal, precentral, and

postcentral gyri may play an additional role in mediating symp-

toms of movement disorders, such as Parkinson disease, Hun-

tington disease, and dystonia.45-47 In fact, DBS of the GPe has

been shown as a potential treatment for both Parkinson disease

and dystonia.46,47 Whether these treatment effects are, in part,

mediated by direct corticopallidal connectivity remains to be de-

termined, but they could potentially provide an additional treat-

ment targeting for these debilitating conditions.

FIGURE. Connectogram showing the connectivity profile for the right and left globus pallidus externus. Lines are weighted by tract count.
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In summary, the connectivity and function of the GPe are not

as well-understood compared with other components of the basal

ganglia.1 Current evidence supports a role of the GPe in limbic,

associative, and sensorimotor processes.3,4 Animal tracer studies

have demonstrated connectivity of the GPe to additional sites in

the basal ganglia that have secondary cortical connections to areas

of matching function3,4; however, we were also able to demon-

strate primary connections to similar cortical areas from cortico-

pallidal fibers. A more complete understanding of the function of

the GPe may help shed light on its role in pathologic conditions,

including Parkinson disease, Huntington disease, obsessive-com-

pulsive disorder, attention deficit/hyperactivity disorder, and

dystonia.6,8,9 In the future, the knowledge of connectivity beyond

the motor network may also reveal a role of the GPe in other

disorders of the limbic and associative networks.

Several limitations of this study are noteworthy. Firstly, limi-

tations of diffusion-based tractography itself include the inability

to determine the directionality (afferent-efferent) of fiber tracts,

the limited resolution of crossing fibers, and the potential for

“false fibers.”48,49 Probabilistic tractography is a more sensitive

and robust method compared with deterministic tractography;

however, probabilistic tractography is associated with a higher

incidence of false fiber detection.50 Additionally, the selection of

thresholds for fiber tract probabilities has pitfalls.51 For instance,

a very small bundle of true fibers may be rejected as a statistical

error simply due to the small number of fibers, effectively biasing

the results to larger fiber bundles. Second, the diffusion-based

tractography method is unable to directly provide any functional

information regarding the fiber tracts; therefore, the function of

the identified tracts is merely speculative. Nevertheless, the ana-

tomic connectivity illustrated in our study is well-aligned with

functional deficits identified in prior animal studies.3,4

CONCLUSIONS
Our in vivo study of the human GPe using probabilistic tractog-

raphy supports the existence of extensive corticopallidal connec-

tions. Direct cortical connections to putative sensorimotor, asso-

ciative, and limbic areas support this tripartite functional division

found in animal studies. A better understanding of the connectiv-

ity of the GPe may help to understand its function and elucidate

the effects of programming the higher contacts in pallidal DBS.

Further electrophysiologic studies are needed to investigate the

significance of these connections and their ultimate role in basal

ganglia circuitry.
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