Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

  • Getting new auth cookie, if you see this message a lot, tell someone!
  • Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleNeurointervention

Inflow Jet Patterns of Unruptured Cerebral Aneurysms Based on the Flow Velocity in the Parent Artery: Evaluation Using 4D Flow MRI

K. Futami, T. Kitabayashi, H. Sano, K. Misaki, N. Uchiyama, F. Ueda and M. Nakada
American Journal of Neuroradiology July 2016, 37 (7) 1318-1323; DOI: https://doi.org/10.3174/ajnr.A4704
K. Futami
aFrom the Department of Neurosurgery, Mattoh-Ishikawa Central Hospital (K.F.), Ishikawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Futami
T. Kitabayashi
bDepartments of Neurosurgery (T.K., H.S., K.M., N.U., M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Kitabayashi
H. Sano
bDepartments of Neurosurgery (T.K., H.S., K.M., N.U., M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Sano
K. Misaki
bDepartments of Neurosurgery (T.K., H.S., K.M., N.U., M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Misaki
N. Uchiyama
bDepartments of Neurosurgery (T.K., H.S., K.M., N.U., M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Uchiyama
F. Ueda
cRadiology (F.U.), Kanazawa University School of Medicine, Ishikawa, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Ueda
M. Nakada
bDepartments of Neurosurgery (T.K., H.S., K.M., N.U., M.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Nakada
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Gasteiger R,
    2. Lehmann DJ,
    3. van Pelt R, et al
    . Automatic detection and visualization of qualitative hemodynamic characteristics in cerebral aneurysms. IEEE Trans Vis Comput Graph 2012;18:2178–87 doi:10.1109/TVCG.2012.202 pmid:26357125
    CrossRefPubMed
  2. 2.↵
    1. Neugebauer M,
    2. Gasteiger R,
    3. Janiga G, et al
    . Effective visual exploration of hemodynamics in cerebral aneurysms. In: Proceedings of the Conference of the European Association for Computer Graphics, Geona, Spain; May 6–10, 2013
  3. 3.↵
    1. Cebral JR,
    2. Sheridan M,
    3. Putman CM
    . Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol 2010;31:304–10 doi:10.3174/ajnr.A1819 pmid:19797790
    Abstract/FREE Full Text
  4. 4.↵
    1. Cebral JR,
    2. Castro MA,
    3. Burgess JE, et al
    . Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 2005;26:2550–59 pmid:16286400
    Abstract/FREE Full Text
  5. 5.↵
    1. Cebral JR,
    2. Mut F,
    3. Weir J, et al
    . Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 2011;32:264–70 doi:10.3174/ajnr.A2274 pmid:21051508
    Abstract/FREE Full Text
  6. 6.↵
    1. Castro MA,
    2. Putman CM,
    3. Sheridan MJ, et al
    . Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am J Neuroradiol 2009;30:297–302 pmid:19131411
    Abstract/FREE Full Text
  7. 7.↵
    1. Schneiders JJ,
    2. Marquering HA,
    3. Antiga L, et al
    . Intracranial aneurysm neck size overestimation with 3D rotational angiography: the impact on intra-aneurysmal hemodynamics simulated with computational fluid dynamics. AJNR Am J Neuroradiol 2013;34:121–28 doi:10.3174/ajnr.A3179 pmid:22899789
    Abstract/FREE Full Text
  8. 8.↵
    1. Jansen IG,
    2. Schneiders JJ,
    3. Potters WV, et al
    . Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. AJNR Am J Neuroradiol 2014;35:1543–48 doi:10.3174/ajnr.A3901 pmid:24651816
    Abstract/FREE Full Text
  9. 9.↵
    1. Meckel S,
    2. Stalder AF,
    3. Santini F, et al
    . In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3 T. Neuroradiology 2008;50:473–84 doi:10.1007/s00234-008-0367-9 pmid:18350286
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Boussel L,
    2. Rayz V,
    3. Martin A, et al
    . Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparisons with computational fluid dynamics. Magn Reson Med 2009;61:409–17 doi:10.1002/mrm.21861 pmid:19161132
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Hope TA,
    2. Hope MD,
    3. Purcell DD, et al
    . Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Magn Reson Imaging 2010;28:41–46 doi:10.1016/j.mri.2009.05.042 pmid:19577400
    CrossRefPubMed
  12. 12.↵
    1. Isoda H,
    2. Ohkura Y,
    3. Kosugi T, et al
    . Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase contrast MRI and MR-based computational fluid dynamics. Neuroradiology 2010;52:913–20 doi:10.1007/s00234-009-0634-4 pmid:19967532
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Isoda H,
    2. Ohkura Y,
    3. Kosugi T, et al
    . In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology 2010;52:921–28 doi:10.1007/s00234-009-0635-3 pmid:20012431
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Naito T,
    2. Miyachi S,
    3. Matsubara N, et al
    . Magnetic resonance fluid dynamics for intracranial aneurysms: comparison with computed fluid dynamics. Acta Neurochir (Wien) 2012;154:993–1001 doi:10.1007/s00701-012-1305-5 pmid:22392013
    CrossRefPubMed
  15. 15.↵
    1. Kawaguchi T,
    2. Nishimura S,
    3. Kanamori M, et al
    . Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. J Neurosurg 2012;117:774–80 doi:10.3171/2012.7.JNS111991 pmid:22920960
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Kecskemeti S,
    2. Johnson K,
    3. Wu Y, et al
    . High resolution three-dimensional cine phase contrast MRI of small intracranial aneurysms using a stack of stars k-space trajectory. J Magn Reason Imaging 2012;35:518–27 doi:10.1002/jmri.23501 pmid:22095652
    CrossRefPubMed
  17. 17.↵
    1. van Ooij P,
    2. Schneiders JJ,
    3. Marquering HA, et al
    . 3D cine phase-contrast MRI at 3T in intracranial aneurysms compared with patient-specific computational fluid dynamics. AJNR Am J Neuroradiol 2013;34:1785–91 doi:10.3174/ajnr.A3484 pmid:23598829
    Abstract/FREE Full Text
  18. 18.↵
    1. Schnell S,
    2. Ansari SA,
    3. Vakil P, et al
    . Three-dimensional hemodynamics in intracranial aneurysms: influence of size and morphology. J Magn Reson Imaging 2014;39:120–31 doi:10.1002/jmri.24110 pmid:24151067
    CrossRefPubMed
  19. 19.↵
    1. Berg P,
    2. Stucht D,
    3. Janiga G, et al
    . Cerebral blood flow in a healthy circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng 2014;136 doi:10.1115/1.4026108 pmid:24292415
    CrossRefPubMed
  20. 20.↵
    1. Futami K,
    2. Sano H,
    3. Misaki K, et al
    . Identification of the inflow zone of unruptured cerebral aneurysms: comparison of 4D flow MRI and 3D TOF MRA data. AJNR Am J Neuroradiol 2014;35:1363–70 doi:10.3174/ajnr.A3877 pmid:24610906
    Abstract/FREE Full Text
  21. 21.↵
    1. Futami K,
    2. Sano H,
    3. Kitabayashi T, et al
    . Parent artery curvature influences inflow zone location of unruptured sidewall cerebral aneurysms. AJNR Am J Neuroradiol 2015;36:342–48 70 doi:10.3174/ajnr.A412270 pmid:25234030
    Abstract/FREE Full Text
  22. 22.↵
    1. Hollnagel DI,
    2. Summers PE,
    3. Poulikakos D, et al
    . Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics. NMR Biomed 2009;22:795–808 doi:10.1002/nbm.1389 pmid:19412933
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Lorensen WE,
    2. Cline HE
    . Marching cubes: a high resolution 3D surface construction algorithm. ACM Siggraph Computer Graphics 1987;21:163–69 doi:10.1145/37402.37422
    CrossRef
  24. 24.↵
    1. Shimai H,
    2. Yokota H,
    3. Nakamura S, et al
    . Extraction from biological volume data of a region of interest with nonuniform intensity. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers 6051, Optomechatronic Machine Vision, Kauhiko, Sumi, Japan. December 6, 2005; 6051:605115
  25. 25.↵
    1. Jiang J,
    2. Johnson K,
    3. Valen-Sendstad K, et al
    . Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase contrast MR measurements and computational fluid dynamics simulations. Med Phys 2011;38:6300–12 doi:10.1118/1.3652917 pmid:22047395
    CrossRefPubMed
  26. 26.↵
    1. van Ooij P,
    2. Guedon A,
    3. Poelma C, et al
    . Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed 2012;25:14–26 doi:10.1002/nbm.1706 pmid:21480417
    CrossRefPubMed
  27. 27.↵
    1. van Ooij P,
    2. Potters WV,
    3. Guédon A, et al
    . Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. J Magn Reson Imaging 2013;38:876–84 doi:10.1002/jmri.24051 pmid:23417769
    CrossRefPubMed
  28. 28.↵
    1. Szikora I,
    2. Paal G,
    3. Ugron A, et al
    . Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study. Neuroradiology 2008;50:411–21 doi:10.1007/s00234-007-0350-x pmid:18180916
    CrossRefPubMed
  29. 29.↵
    1. Xiang J,
    2. Yu J,
    3. Snyder KV, et al
    . Hemodynamic-morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size. J Neurointerv Surg 2016;8:104–10 doi:10.1136/neurintsurg-2014-011477 pmid:25488922
    Abstract/FREE Full Text
  30. 30.↵
    1. Yasuda R,
    2. Strother CM,
    3. Taki W, et al
    . Aneurysm volume-to-ostium area ratio: a parameter useful for discriminating the rupture status of intracranial aneurysms. Neurosurgery 2011;68:310–17 doi:10.1227/NEU.0b013e3182010ed0 pmid:21135739
    CrossRefPubMed
  31. 31.↵
    1. Tang C,
    2. Blatter CC,
    3. Paker DL
    . Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging 1993;3:377–85 doi:10.1002/jmri.1880030213 pmid:8448400
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 37 (7)
American Journal of Neuroradiology
Vol. 37, Issue 7
1 Jul 2016
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inflow Jet Patterns of Unruptured Cerebral Aneurysms Based on the Flow Velocity in the Parent Artery: Evaluation Using 4D Flow MRI
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K. Futami, T. Kitabayashi, H. Sano, K. Misaki, N. Uchiyama, F. Ueda, M. Nakada
Inflow Jet Patterns of Unruptured Cerebral Aneurysms Based on the Flow Velocity in the Parent Artery: Evaluation Using 4D Flow MRI
American Journal of Neuroradiology Jul 2016, 37 (7) 1318-1323; DOI: 10.3174/ajnr.A4704

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Inflow Jet Patterns of Unruptured Cerebral Aneurysms Based on the Flow Velocity in the Parent Artery: Evaluation Using 4D Flow MRI
K. Futami, T. Kitabayashi, H. Sano, K. Misaki, N. Uchiyama, F. Ueda, M. Nakada
American Journal of Neuroradiology Jul 2016, 37 (7) 1318-1323; DOI: 10.3174/ajnr.A4704
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Associations between haemodynamics and wall enhancement of intracranial aneurysm
  • Large Neck and Strong Ostium Inflow as the Potential Causes for Delayed Occlusion of Unruptured Sidewall Intracranial Aneurysms Treated by Flow Diverter
  • Identification of Vortex Cores in Cerebral Aneurysms on 4D Flow MRI
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Rescue Reentry in Carotid Near-Occlusion
  • Contour Neurovascular System: Five Year Follow Up
  • Effect of SARS-CoV2 on Endovascular Thrombectomy
Show more Neurointervention

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire