Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleWhite Paper

ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain

K. Welker, J. Boxerman, A. Kalnin, T. Kaufmann, M. Shiroishi, M. Wintermark and for the American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee
American Journal of Neuroradiology June 2015, 36 (6) E41-E51; DOI: https://doi.org/10.3174/ajnr.A4341
K. Welker
aFrom the Department of Radiology (K.W., T.K.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Boxerman
bDepartment of Diagnostic Imaging (J.B.), Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Kalnin
cDepartment of Radiology (A.K.), Wexner Medical Center, The Ohio State University, Columbus, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Kalnin
T. Kaufmann
aFrom the Department of Radiology (K.W., T.K.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Shiroishi
dDivision of Neuroradiology, Department of Radiology (M.S.), Keck School of Medicine, University of Southern California, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Wintermark
eDepartment of Radiology, Neuroradiology Section (M.W.), Stanford University, Stanford, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Essig M,
    2. Shiroishi MS,
    3. Nguyen TB, et al
    . Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 2013;200:24–34
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Petrella JR,
    2. Provenzale JM
    . MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol 2000;175:207–19
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Copen WA,
    2. Schaefer PW,
    3. Wu O
    . MR perfusion imaging in acute ischemic stroke. Neuroimaging Clin N Am 2011;21:259–83, x
    CrossRefPubMed
  4. 4.↵
    1. Barajas RF Jr.,
    2. Chang JS,
    3. Segal MR, et al
    . Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253:486–96
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Cha S,
    2. Lupo JM,
    3. Chen MH, et al
    . Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078–84
    Abstract/FREE Full Text
  6. 6.↵
    1. Lupo JM,
    2. Cha S,
    3. Chang SM, et al
    . Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 2005;26:1446–54
    Abstract/FREE Full Text
  7. 7.↵
    1. Calamante F
    . Perfusion MRI using dynamic-susceptibility contrast MRI: quantification issues in patient studies. Top Magn Reson Imaging 2010;21:75–85
    CrossRefPubMed
  8. 8.↵
    1. Jackson A,
    2. O'Connor J,
    3. Thompson G, et al
    . Magnetic resonance perfusion imaging in neuro-oncology. Cancer Imaging 2008;8:186–99
    PubMed
  9. 9.↵
    1. Thompson G,
    2. Mills SJ,
    3. Stivaros SM, et al
    . Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am 2010;20:337–53
    CrossRefPubMed
  10. 10.↵
    1. Barbier EL,
    2. Lamalle L,
    3. Décorps M
    . Methodology of brain perfusion imaging. J Magn Reson Imaging 2001;13:496–520
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. O'Connor JP,
    2. Jackson A,
    3. Parker GJ, et al
    . DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 2007;96:189–95
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Pollock JM,
    2. Tan H,
    3. Kraft RA, et al
    . Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am 2009;17:315–38
    CrossRefPubMed
  13. 13.↵
    1. Hourani R,
    2. Brant LJ,
    3. Rizk T, et al
    . Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain lesions in adults? AJNR Am J Neuroradiol 2008;29:366–72
    Abstract/FREE Full Text
  14. 14.↵
    1. Calli C,
    2. Kitis O,
    3. Yunten N, et al
    . Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 2006;58:394–403
    CrossRefPubMed
  15. 15.↵
    1. Chiang IC,
    2. Kuo YT,
    3. Lu CY, et al
    . Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology 2004;46:619–27
    PubMedWeb of Science
  16. 16.↵
    1. Law M,
    2. Cha S,
    3. Knopp EA, et al
    . High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002;222:715–21
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Liao W,
    2. Liu Y,
    3. Wang X, et al
    . Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging. Acta Radiol 2009;50:217–25
    Abstract/FREE Full Text
  18. 18.↵
    1. Toh CH,
    2. Wei KC,
    3. Chang CN, et al
    . Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction. AJNR Am J Neuroradiol 2013;34:1145–49
    Abstract/FREE Full Text
  19. 19.↵
    1. Xing C,
    2. Fu X,
    3. Sun X, et al
    . Different expression patterns and functions of acetylated and unacetylated Klf5 in the proliferation and differentiation of prostatic epithelial cells. PLoS One 2013;8:e65538
    CrossRefPubMed
  20. 20.↵
    1. Aronen HJ,
    2. Gazit IE,
    3. Louis DN, et al
    . Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994;191:41–51
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Arvinda HR,
    2. Kesavadas C,
    3. Sarma PS, et al
    . Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 2009;94:87–96
    CrossRefPubMed
  22. 22.↵
    1. Kim H,
    2. Choi SH,
    3. Kim JH, et al
    . Gliomas: application of cumulative histogram analysis of normalized cerebral blood volume on 3 T MRI to tumor grading. PLoS One 2013;8:e63462
    CrossRefPubMed
  23. 23.↵
    1. Knopp EA,
    2. Cha S,
    3. Johnson G, et al
    . Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999;211:791–98
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Law M,
    2. Yang S,
    3. Wang H, et al
    . Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003;24:1989–98
    Abstract/FREE Full Text
  25. 25.↵
    1. Shin JH,
    2. Lee HK,
    3. Kwun BD, et al
    . Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 2002;179:783–89
    CrossRefPubMed
  26. 26.↵
    1. Zhang H,
    2. Rodiger LA,
    3. Shen T, et al
    . Perfusion MR imaging for differentiation of benign and malignant meningiomas. Neuroradiology 2008;50:525–30
    CrossRefPubMed
  27. 27.↵
    1. Barajas RF Jr.,
    2. Phillips JJ,
    3. Parvataneni R, et al
    . Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR imaging. Neuro Oncol 2012;14:942–54
    Abstract/FREE Full Text
  28. 28.↵
    1. Lefranc M,
    2. Monet P,
    3. Desenclos C, et al
    . Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies. Stereotact Funct Neurosurg 2012;90:240–47
    CrossRefPubMed
  29. 29.↵
    1. Gasparetto EL,
    2. Pawlak MA,
    3. Patel SH, et al
    . Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology 2009;250:887–96
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Hu LS,
    2. Baxter LC,
    3. Smith KA, et al
    . Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552–58
    Abstract/FREE Full Text
  31. 31.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Heiserman JE, et al
    . Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol 2012;14:919–30
    Abstract/FREE Full Text
  32. 32.↵
    1. Kong DS,
    2. Kim ST,
    3. Kim EH, et al
    . Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 2011;32:382–87
    Abstract/FREE Full Text
  33. 33.↵
    1. Sugahara T,
    2. Korogi Y,
    3. Tomiguchi S, et al
    . Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000;21:901–09
    Abstract/FREE Full Text
  34. 34.↵
    1. Tsien C,
    2. Galban CJ,
    3. Chenevert TL, et al
    . Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 2010;28:2293–99
    Abstract/FREE Full Text
  35. 35.↵
    1. Young RJ,
    2. Gupta A,
    3. Shah AD, et al
    . MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin Imaging 2013;37:41–49
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Barajas RF,
    2. Chang JS,
    3. Sneed PK, et al
    . Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2009;30:367–72
    Abstract/FREE Full Text
  37. 37.↵
    1. Mitsuya K,
    2. Nakasu Y,
    3. Horiguchi S, et al
    . Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 2010;99:81–88
    CrossRefPubMed
  38. 38.↵
    1. Akella NS,
    2. Twieg DB,
    3. Mikkelsen T, et al
    . Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: quality and analysis results of a phase I trial. J Magn Reson Imaging 2004;20:913–22
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Sawlani RN,
    2. Raizer J,
    3. Horowitz SW, et al
    . Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging–pilot study. Radiology 2010;255:622–28
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Wintermark M,
    2. Sanelli PC,
    3. Albers GW, et al
    . Imaging recommendations for acute stroke and transient ischemic attack patients: a joint statement by the American Society of Neuroradiology, the American College of Radiology, and the Society of NeuroInterventional Surgery. AJNR Am J Neuroradiol 2013;34:E117–27
    Abstract/FREE Full Text
  41. 41.↵
    1. Apruzzese A,
    2. Silvestrini M,
    3. Floris R, et al
    . Cerebral hemodynamics in asymptomatic patients with internal carotid artery occlusion: a dynamic susceptibility contrast MR and transcranial Doppler study. AJNR Am J Neuroradiol 2001;22:1062–67
    Abstract/FREE Full Text
  42. 42.↵
    1. Kavec M,
    2. Usenius JP,
    3. Tuunanen PI, et al
    . Assessment of cerebral hemodynamics and oxygen extraction using dynamic susceptibility contrast and spin echo blood oxygenation level-dependent magnetic resonance imaging: applications to carotid stenosis patients. Neuroimage 2004;22:258–67
    CrossRefPubMed
  43. 43.↵
    1. Vatter H,
    2. Guresir E,
    3. Berkefeld J, et al
    . Perfusion-diffusion mismatch in MRI to indicate endovascular treatment of cerebral vasospasm after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2011;82:876–83
    Abstract/FREE Full Text
  44. 44.↵
    1. Weisskoff RM,
    2. Zuo CS,
    3. Boxerman JL, et al
    . Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 1994;31:601–10
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Boxerman JL,
    2. Hamberg LM,
    3. Rosen BR, et al
    . MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555–66
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Schmiedeskamp H,
    2. Straka M,
    3. Newbould RD, et al
    . Combined spin- and gradient-echo perfusion-weighted imaging. Magn Reson Med 2012;68:30–40
    CrossRefPubMed
  47. 47.↵
    1. Vonken EJ,
    2. van Osch MJ,
    3. Bakker CJ, et al
    . Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 1999;10:109–17
    CrossRefPubMed
  48. 48.↵
    1. Dennie J,
    2. Mandeville JB,
    3. Boxerman JL, et al
    . NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 1998;40:793–99
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Donahue KM,
    2. Krouwer HG,
    3. Rand SD, et al
    . Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000;43:845–53
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Boxerman JL,
    2. Rosen BR,
    3. Weisskoff RM
    . Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 1997;7:528–37
    CrossRefPubMed
  51. 51.↵
    1. Knutsson L,
    2. Stahlberg F,
    3. Wirestam R
    . Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study. Magn Reson Imaging 2004;22:789–98
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Smith MR,
    2. Lu H,
    3. Frayne R
    . Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents. Magn Reson Med 2003;49:122–28
    CrossRefPubMed
  53. 53.↵
    1. Thilmann O,
    2. Larsson EM,
    3. Bjorkman-Burtscher IM, et al
    . Effects of echo time variation on perfusion assessment using dynamic susceptibility contrast MR imaging at 3 Tesla. Magn Reson Imaging 2004;22:929–35
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67
    Abstract/FREE Full Text
  55. 55.↵
    1. Cha S,
    2. Knopp EA,
    3. Johnson G, et al
    . Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 2002;223:11–29
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Calamante F,
    2. Vonken EJ,
    3. van Osch MJ
    . Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 2007;58:544–53
    CrossRefPubMed
  57. 57.↵
    1. Wintermark M,
    2. Albers GW,
    3. Alexandrov AV, et al
    . Acute stroke imaging research roadmap. AJNR Am J Neuroradiol 2008;29:e23–30
    Abstract/FREE Full Text
  58. 58.↵
    1. Newbould RD,
    2. Skare ST,
    3. Jochimsen TH, et al
    . Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007;58:70–81
    CrossRefPubMed
  59. 59.↵
    1. Quarles CC,
    2. Gochberg DF,
    3. Gore JC, et al
    . A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation. Phys Med Biol 2009;54:5749–66
    CrossRefPubMed
  60. 60.↵
    1. Schmainda KM,
    2. Rand SD,
    3. Joseph AM, et al
    . Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 2004;25:1524–32
    Abstract/FREE Full Text
  61. 61.↵
    1. Boxerman JL,
    2. Prah DE,
    3. Paulson ES, et al
    . The role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. AJNR Am J Neuroradiol 2012;33:1081–87
    Abstract/FREE Full Text
  62. 62.↵
    1. Hu LS,
    2. Baxter LC,
    3. Pinnaduwage DS, et al
    . Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol 2010;31:40–48
    Abstract/FREE Full Text
  63. 63.↵
    1. Gahramanov S,
    2. Raslan AM,
    3. Muldoon LL, et al
    . Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study. Int J Radiat Oncol Biol Phys 2011;79:514–23
    CrossRefPubMed
  64. 64.↵
    1. van Osch MJ,
    2. Vonken EJ,
    3. Wu O, et al
    . Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 2003;50:614–22
    CrossRefPubMed
  65. 65.↵
    1. Kosior RK,
    2. Kosior JC,
    3. Frayne R
    . Improved dynamic susceptibility contrast (DSC)-MR perfusion estimates by motion correction. J Magn Reson Imaging 2007;26:1167–72
    CrossRefPubMed
  66. 66.↵
    1. Willats L,
    2. Connelly A,
    3. Calamante F
    . Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 2006;56:146–56
    CrossRefPubMed
  67. 67.↵
    1. Bleeker EJ,
    2. van Osch MJ,
    3. Connelly A, et al
    . New criterion to aid manual and automatic selection of the arterial input function in dynamic susceptibility contrast MRI. Magn Reson Med 2011;65:448–56
    CrossRefPubMed
  68. 68.↵
    1. Rosen BR,
    2. Belliveau JW,
    3. Vevea JM, et al
    . Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249–65
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Paulson ES,
    2. Schmainda KM
    . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008;249:601–13
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Bjornerud A,
    2. Sorensen AG,
    3. Mouridsen K, et al
    . T1- and T2*-dominant extravasation correction in DSC-MRI. Part I. Theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 2011;31:2041–53
    CrossRefPubMed
  71. 71.↵
    1. Willats L,
    2. Calamante F
    . The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR Biomed 2013;26:913–31
    CrossRefPubMed
  72. 72.↵
    1. Bleeker EJW,
    2. van Buchem MA,
    3. van Osch MJP
    . Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 2009;29:840–52
    CrossRefPubMed
  73. 73.↵
    1. Wu O,
    2. Ostergaard L,
    3. Sorensen AG
    . Technical aspects of perfusion-weighted imaging. Neuroimaging Clin N Am 2005;15:623–37, xi
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Thijs VN,
    2. Somford DM,
    3. Bammer R, et al
    . Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging. Stroke 2004;35:94–98
    Abstract/FREE Full Text
  75. 75.↵
    1. Calamante F,
    2. Gadian DG,
    3. Connelly A
    . Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 2002;33:1146–51
    Abstract/FREE Full Text
  76. 76.↵
    1. Wintermark M,
    2. Sesay M,
    3. Barbier E, et al
    . Comparative overview of brain perfusion imaging techniques. Stroke 2005;36:e83–99
    Abstract/FREE Full Text
  77. 77.↵
    1. Keston P,
    2. Murray AD,
    3. Jackson A
    . Cerebral perfusion imaging using contrast-enhanced MRI. Clin Radiol 2003;58:505–13
    CrossRefPubMed
  78. 78.↵
    1. Carroll TJ,
    2. Haughton VM,
    3. Rowley HA, et al
    . Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis. AJNR Am J Neuroradiol 2002;23:1007–12
    Abstract/FREE Full Text
  79. 79.↵
    1. Reber PJ,
    2. Wong EC,
    3. Buxton RB, et al
    . Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med 1998;39:328–30
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Covarrubias DJ,
    2. Rosen BR,
    3. Lev MH
    . Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 2004;9:528–37
    Abstract/FREE Full Text
  81. 81.↵
    1. Bobek-Billewicz B,
    2. Stasik-Pres G,
    3. Majchrzak H, et al
    . Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy. Folia Neuropathol 2010;48:81–92
    PubMedWeb of Science
  82. 82.↵
    1. Bedekar D,
    2. Jensen T,
    3. Schmainda KM
    . Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn Reson Med 2010;64:907–13
    CrossRefPubMed
  83. 83.↵
    1. Essig M,
    2. Nguyen TB,
    3. Shiroishi MS, et al
    . Perfusion MRI: the five most frequently asked clinical questions. AJR Am J Roentgenol 2013;201:W495–510
    CrossRefPubMed
  84. 84.↵
    1. Caseiras GB,
    2. Thornton JS,
    3. Yousry T, et al
    . Inclusion or exclusion of intratumoral vessels in relative cerebral blood volume characterization in low-grade gliomas: does it make a difference? AJNR Am J Neuroradiol 2008;29:1140–41
    Abstract/FREE Full Text
  85. 85.↵
    1. Wetzel SG,
    2. Cha S,
    3. Johnson G, et al
    . Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 2002;224:797–803
    CrossRefPubMedWeb of Science
  86. 86.↵
    1. Zonari P,
    2. Baraldi P,
    3. Crisi G
    . Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 2007;49:795–803
    CrossRefPubMedWeb of Science
  87. 87.↵
    1. Law M,
    2. Young R,
    3. Babb J, et al
    . Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 2007;28:761–66
    Abstract/FREE Full Text
  88. 88.↵
    1. Young R,
    2. Babb J,
    3. Law M, et al
    . Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 2007;26:1053–63
    CrossRefPubMed
  89. 89.↵
    1. Østergaard L
    . Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 2005;22:710–17
    CrossRefPubMed
  90. 90.↵
    1. Geer CP,
    2. Simonds J,
    3. Anvery A, et al
    . Does MR perfusion imaging impact management decisions for patients with brain tumors? A prospective study. AJNR Am J Neuroradiol 2012;33:556–62
    Abstract/FREE Full Text
  91. 91.↵
    1. Lev MH,
    2. Ozsunar Y,
    3. Henson JW, et al
    . Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 2004;25:214–21
    Abstract/FREE Full Text
  92. 92.↵
    1. Bisdas S,
    2. Kirkpatrick M,
    3. Giglio P, et al
    . Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol 2009;30:681–88
    Abstract/FREE Full Text
  93. 93.↵
    1. Law M,
    2. Young RJ,
    3. Babb JS, et al
    . Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–98
    CrossRefPubMedWeb of Science
  94. 94.↵
    1. Law M,
    2. Oh S,
    3. Johnson G, et al
    . Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery 2006;58:1099–107; discussion 1099–107
    CrossRefPubMedWeb of Science
  95. 95.↵
    1. Mangla R,
    2. Singh G,
    3. Ziegelitz D, et al
    . Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 2010;256:575–84
    CrossRefPubMedWeb of Science
  96. 96.↵
    1. Spampinato MV,
    2. Schiarelli C,
    3. Cianfoni A, et al
    . Correlation between cerebral blood volume measurements by perfusion-weighted magnetic resonance imaging and two-year progression-free survival in gliomas. Neuroradiol J 2013;26:385–95
    Abstract/FREE Full Text
  97. 97.↵
    1. Danchaivijitr N,
    2. Waldman AD,
    3. Tozer DJ, et al
    . Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 2008;247:170–78
    CrossRefPubMed
  98. 98.↵
    1. Xing Z,
    2. You RX,
    3. Li J, et al
    . Differentiation of primary central nervous system lymphomas from high-grade gliomas by rCBV and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Clin Neuroradiol 2014;24:329–36
    CrossRefPubMed
  99. 99.↵
    1. Saloner D,
    2. Uzelac A,
    3. Hetts S, et al
    . Modern meningioma imaging techniques. J Neurooncol 2010;99:333–40
    CrossRefPubMed
  100. 100.↵
    1. Baird AE,
    2. Warach S
    . Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 1998;18:583–609
    CrossRefPubMedWeb of Science
  101. 101.↵
    1. Warach S,
    2. Chien D,
    3. Li W, et al
    . Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992;42:1717–23
    CrossRef
  102. 102.↵
    1. Chalela JA,
    2. Kidwell CS,
    3. Nentwich LM, et al
    . Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 2007;369:293–98
    CrossRefPubMedWeb of Science
  103. 103.↵
    1. Kumon Y,
    2. Zenke K,
    3. Kusunoki K, et al
    . Diagnostic use of isotropic diffusion-weighted MRI in patients with ischaemic stroke: detection of the lesion responsible for the clinical deficit. Neuroradiology 1999;41:777–84
    CrossRefPubMed
  104. 104.↵
    1. Lansberg MG,
    2. Norbash AM,
    3. Marks MP, et al
    . Advantages of adding diffusion-weighted magnetic resonance imaging to conventional magnetic resonance imaging for evaluating acute stroke. Arch Neurol 2000;57:1311–16
    CrossRefPubMedWeb of Science
  105. 105.↵
    1. Lutsep HL,
    2. Albers GW,
    3. DeCrespigny A, et al
    . Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol 1997;41:574–80
    CrossRefPubMedWeb of Science
  106. 106.↵
    1. Tortora F,
    2. Cirillo M,
    3. Ferrara M, et al
    . DWI reversibility after intra-arterial thrombolysis. a case report and literature review. Neuroradiol J 2010;23:752–62
    Abstract/FREE Full Text
  107. 107.↵
    1. Sasaki M,
    2. Kudo K,
    3. Christensen S, et al
    . Penumbral imaging by using perfusion computed tomography and perfusion-weighted magnetic resonance imaging: current concepts. J Stroke Cerebrovasc Dis 2013;22:1212–15
    CrossRefPubMed
  108. 108.↵
    1. Olivot JM,
    2. Mlynash M,
    3. Thijs VN, et al
    . Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009;40:469–75
    Abstract/FREE Full Text
  109. 109.↵
    1. Takasawa M,
    2. Jones PS,
    3. Guadagno JV, et al
    . How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008;39:870–77
    Abstract/FREE Full Text
  110. 110.↵
    1. Zhang N,
    2. Zhang L,
    3. Qiu B, et al
    . Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging 2012;36:355–63
    CrossRefPubMed
  111. 111.↵
    1. Choi HS,
    2. Kim AH,
    3. Ahn SS, et al
    . Glioma grading capability: comparisons among parameters from dynamic contrast-enhanced MRI and ADC value on DWI. Korean J Radiol 2013;14:487–92
    CrossRefPubMed
  112. 112.↵
    1. Nguyen TB,
    2. Cron GO,
    3. Mercier JF, et al
    . Diagnostic accuracy of dynamic contrast-enhanced MR imaging using a phase-derived vascular input function in the preoperative grading of gliomas. AJNR Am J Neuroradiol 2012;33:1539–45
    Abstract/FREE Full Text
  113. 113.↵
    1. Bisdas S,
    2. Naegele T,
    3. Ritz R, et al
    . Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol 2011;18:575–83
    CrossRefPubMed
  114. 114.↵
    1. Suh CH,
    2. Kim HS,
    3. Choi YJ, et al
    . Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol 2013;34:2278–86
    Abstract/FREE Full Text
  115. 115.↵
    1. Chung WJ,
    2. Kim HS,
    3. Kim N, et al
    . Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology 2013;269:561–68
    CrossRefPubMed
  116. 116.↵
    1. Narang J,
    2. Jain R,
    3. Arbab AS, et al
    . Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro Oncol 2011;13:1037–46
    Abstract/FREE Full Text
  117. 117.↵
    1. Sorensen AG,
    2. Batchelor TT,
    3. Zhang WT, et al
    . A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 2009;69:5296–300
    Abstract/FREE Full Text
  118. 118.↵
    1. Gerstner ER,
    2. Duda DG,
    3. di Tomaso E, et al
    . VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 2009;6:229–36
    CrossRefPubMed
  119. 119.↵
    1. Sorensen AG,
    2. Emblem KE,
    3. Polaskova P, et al
    . Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res 2012;72:402–07
    Abstract/FREE Full Text
  120. 120.↵
    1. Batchelor TT,
    2. Gerstner ER,
    3. Emblem KE, et al
    . Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci U S A 2013;110:19059–64
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (6)
American Journal of Neuroradiology
Vol. 36, Issue 6
1 Jun 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K. Welker, J. Boxerman, A. Kalnin, T. Kaufmann, M. Shiroishi, M. Wintermark, for the American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee
ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain
American Journal of Neuroradiology Jun 2015, 36 (6) E41-E51; DOI: 10.3174/ajnr.A4341

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain
K. Welker, J. Boxerman, A. Kalnin, T. Kaufmann, M. Shiroishi, M. Wintermark, for the American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee
American Journal of Neuroradiology Jun 2015, 36 (6) E41-E51; DOI: 10.3174/ajnr.A4341
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Appendix: Complementary Role of DCE-MR Perfusion in the Assessment of Brain Tumors
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Perfusion Showdown: Comparison of Multiple MRI Perfusion Techniques in the Grading of Pediatric Brain Tumors
  • DSC MR Perfusion at 7T MRI: An Initial Single-Center Study for Validity and Practicability
  • "Synthetic" DSC Perfusion MRI with Adjustable Acquisition Parameters in Brain Tumors Using Dynamic Spin-and-Gradient-Echo Echoplanar Imaging
  • Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
  • Non-Invasive Perfusion MR Imaging of the Human Brain via Breath-Holding
  • Redefining Hemodynamic Imaging in Stroke: Perfusion Parameter Map Generation from TOF-MRA using Artificial Intelligence
  • Comprehensive Update and Review of Clinical and Imaging Features of SMART Syndrome
  • Comprehensive Update and Review of Clinical and Imaging Features of SMART Syndrome
  • Impact of 18F-FET PET/MRI on Clinical Management of Brain Tumor Patients
  • MTT and Blood-Brain Barrier Disruption within Asymptomatic Vascular WM Lesions
  • Vessel Type Determined by Vessel Architectural Imaging Improves Differentiation between Early Tumor Progression and Pseudoprogression in Glioblastoma
  • Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
  • Presurgical Identification of Primary Central Nervous System Lymphoma with Normalized Time-Intensity Curve: A Pilot Study of a New Method to Analyze DSC-PWI
  • Diagnostic Performance of PET and Perfusion-Weighted Imaging in Differentiating Tumor Recurrence or Progression from Radiation Necrosis in Posttreatment Gliomas: A Review of Literature
  • Discrimination between Glioblastoma and Solitary Brain Metastasis: Comparison of Inflow-Based Vascular-Space-Occupancy and Dynamic Susceptibility Contrast MR Imaging
  • Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies
  • Utility of Percentage Signal Recovery and Baseline Signal in DSC-MRI Optimized for Relative CBV Measurement for Differentiating Glioblastoma, Lymphoma, Metastasis, and Meningioma
  • Brain DSC MR Perfusion in Children: A Clinical Feasibility Study Using Different Technical Standards of Contrast Administration
  • Optimization of Acquisition and Analysis Methods for Clinical Dynamic Susceptibility Contrast MRI Using a Population-Based Digital Reference Object
  • Optimization of DSC MRI Echo Times for CBV Measurements Using Error Analysis in a Pilot Study of High-Grade Gliomas
  • Effects of MRI Protocol Parameters, Preload Injection Dose, Fractionation Strategies, and Leakage Correction Algorithms on the Fidelity of Dynamic-Susceptibility Contrast MRI Estimates of Relative Cerebral Blood Volume in Gliomas
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • AI-Enabled Imaging Tools: Critical Appraisal
  • Amyloid Imaging Abnormalities in Alzheimer’s
  • The Updated Neuroradiology Milestones: Synapsing from 1.0 to 2.0
Show more WHITE PAPER

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire