Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain
Open Access

Comparing 3T and 1.5T MRI for Mapping Hippocampal Atrophy in the Alzheimer's Disease Neuroimaging Initiative

N. Chow, K.S. Hwang, S. Hurtz, A.E. Green, J.H. Somme, P.M. Thompson, D.A. Elashoff, C.R. Jack, M. Weiner and L.G. Apostolova for the Alzheimer's Disease Neuroimaging Initiative
American Journal of Neuroradiology April 2015, 36 (4) 653-660; DOI: https://doi.org/10.3174/ajnr.A4228
N. Chow
aFrom the School of Medicine (N.C.), University of California, Irvine, Irvine, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.S. Hwang
bOakland University William Beaumont School of Medicine (K.S.H.), Rochester Hills, Michigan
cDepartments of Neurology (K.S.H., S.H., L.G.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Hurtz
cDepartments of Neurology (K.S.H., S.H., L.G.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.E. Green
eDepartment of Physiology (A.E.G.), Monash University, Melbourne, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.H. Somme
fDepartment of Neurology (J.H.S.), Cruces University Hospital, Barakaldo, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.M. Thompson
gImaging Genetics Center (P.M.T.), Institute for Neuroimaging and Informatics, Keck/University of Southern California School of Medicine, Los Angeles, California
hDepartments of Neurology, Psychiatry, Engineering, Radiology, and Ophthalmology (P.M.T.), University of Southern California, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.A. Elashoff
dBiostatistics (D.A.E.), University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.R. Jack
iDepartment of Radiology (C.R.J.), Mayo Clinic and Foundation, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Weiner
jDepartment of Radiology and Biomedical Imaging (M.W.), University of California, San Francisco, School of Medicine, San Francisco, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.G. Apostolova
cDepartments of Neurology (K.S.H., S.H., L.G.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    Alzheimer's Association. 2013 Alzheimer's disease facts and figures. Alzheimers Dement 2013;9:208–45
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Wortmann M
    . Dementia: a global health priority—highlights from an ADI and World Health Organization report. Alzheimers Res Ther 2012;4:40
    PubMed
  3. 3.↵
    1. Petersen RC,
    2. Doody R,
    3. Kurz A, et al
    . Current concepts in mild cognitive impairment. Arch Neurol 2001;58:1985–92
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Appel J,
    2. Potter E,
    3. Shen Q, et al
    . A comparative analysis of structural brain MRI in the diagnosis of Alzheimer's disease. Behav Neurol 2009;21:13–19
    CrossRefPubMed
  5. 5.↵
    1. Bobinski M,
    2. de Leon MJ,
    3. Wegiel J, et al
    . The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience 2000;95:721–25
    PubMedWeb of Science
  6. 6.↵
    1. Zarow C,
    2. Vinters HV,
    3. Ellis WG, et al
    . Correlates of hippocampal neuron number in Alzheimer's disease and ischemic vascular dementia. Ann Neurol 2005;57:896–903
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Csernansky JG,
    2. Hamstra J,
    3. Wang L, et al
    . Correlations between antemortem hippocampal volume and postmortem neuropathology in AD subjects. Alzheimer Dis Assoc Disord 2004;18:190–95
    PubMedWeb of Science
  8. 8.↵
    1. Frisoni GB,
    2. Ganzola R,
    3. Canu E, et al
    . Mapping local hippocampal changes in Alzheimer's disease and normal ageing with MRI at 3 Tesla. Brain 2008;131:3266–76
    Abstract/FREE Full Text
  9. 9.↵
    1. Apostolova LG,
    2. Thompson PM,
    3. Green AE, et al
    . 3D comparison of low, intermediate, and advanced hippocampal atrophy in MCI. Hum Brain Mapp 2010;31:786–97
    CrossRefPubMed
  10. 10.↵
    1. Apostolova LG,
    2. Dutton RA,
    3. Dinov ID, et al
    . Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol 2006;63:693–99
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Apostolova LG,
    2. Dinov ID,
    3. Dutton RA, et al
    . 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease. Brain 2006;129:2867–73
    Abstract/FREE Full Text
  12. 12.↵
    1. Mueller SG,
    2. Laxer KD,
    3. Barakos J, et al
    . Subfield atrophy pattern in temporal lobe epilepsy with and without mesial sclerosis detected by high-resolution MRI at 4 Tesla: preliminary results. Epilepsia 2009;50:1474–83
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Mueller SG,
    2. Chao LL,
    3. Berman B, et al
    . Evidence for functional specialization of hippocampal subfields detected by MR subfield volumetry on high resolution images at 4 T. Neuroimage 2011;56:851–57
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Scheltens P,
    2. Launer LJ,
    3. Barkhof F, et al
    . Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol 1995;242:557–60
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Visser PJ,
    2. Verhey FR,
    3. Hofman PA, et al
    . Medial temporal lobe atrophy predicts Alzheimer's disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 2002;72:491–97
    Abstract/FREE Full Text
  16. 16.↵
    1. Korf ES,
    2. Wahlund LO,
    3. Visser PJ, et al
    . Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 2004;63:94–100
    CrossRef
  17. 17.↵
    1. Jack CR Jr.,
    2. Petersen RC,
    3. Xu YC, et al
    . Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999;52:1397–403
    CrossRefPubMed
  18. 18.↵
    1. Devanand DP,
    2. Pradhaban G,
    3. Liu X, et al
    . Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 2007;68:828–36
    CrossRefPubMed
  19. 19.↵
    1. Mueller SG,
    2. Schuff N,
    3. Yaffe K, et al
    . Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease. Hum Brain Mapp 2010;31:1339–47
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Morra JH,
    2. Tu Z,
    3. Apostolova LG, et al
    . Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Hum Brain Mapp 2009;30:2766–88
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Apostolova LG,
    2. Morra JH,
    3. Green AE, et al
    . Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects. Neuroimage 2010;51:488–99
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Apostolova LG,
    2. Hwang KS,
    3. Andrawis JP, et al
    . 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects. Neurobiol Aging 2010;31:1284–303
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Colliot O,
    2. Chetelat G,
    3. Chupin M, et al
    . Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 2008;248:194–201
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Fushimi Y,
    2. Miki Y,
    3. Urayama S, et al
    . Gray matter-white matter contrast on spin-echo T1-weighted images at 3 T and 1.5 T: a quantitative comparison study. Eur Radiol 2007;17:2921–25
    CrossRefPubMed
  25. 25.↵
    1. Lötjönen J,
    2. Wolz R,
    3. Koikkalainen J, et al
    . Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease. Neuroimage 2011;56:185–96
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Ho AJ,
    2. Hua X,
    3. Lee S, et al
    . Comparing 3 T and 1.5 T MRI for tracking Alzheimer's disease progression with tensor-based morphometry. Hum Brain Mapp 2010;31:499–514
    CrossRefPubMed
  27. 27.↵
    1. Macdonald KE,
    2. Leung KK,
    3. Bartlett JW, et al
    . Automated template-based hippocampal segmentations from MRI: the effects of 1.5T or 3T field strength on accuracy. Neuroinformatics 2014;12:405–12
    CrossRefPubMed
  28. 28.↵
    1. Briellmann RS,
    2. Syngeniotis A,
    3. Jackson GD
    . Comparison of hippocampal volumetry at 1.5 Tesla and at 3 Tesla. Epilepsia 2001;42:1021–24
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Mueller SG,
    2. Weiner MW,
    3. Thal LJ, et al
    . The Alzheimer's Disease Neuroimaging Initiative. Neuroimaging Clin N Am 2005;15:869–77, xi–xii
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Mueller SG,
    2. Weiner MW,
    3. Thal LJ, et al
    . Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 2005;1:55–66
    CrossRefPubMed
  31. 31.↵
    1. Jack CR Jr.,
    2. Bernstein MA,
    3. Fox NC, et al
    . The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 2008;27:685–91
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Weiner MW,
    2. Veitch DP,
    3. Aisen PS, et al
    . The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 2013;9:e111–194
    CrossRefPubMed
  33. 33.↵
    1. Hughes CP,
    2. Berg L,
    3. Danziger WL, et al
    . A new clinical scale for the staging of dementia. Br J Psychiatry 1982;140:566–72
    Abstract/FREE Full Text
  34. 34.↵
    1. Morris JC
    . The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43:2412–14
    CrossRefPubMed
  35. 35.↵
    1. Cockrell JR,
    2. Folstein MF
    . Mini-Mental State Examination (MMSE). Psychopharmacol Bull 1988;24:689–92
    PubMedWeb of Science
  36. 36.↵
    1. Folstein MF,
    2. Folstein SE,
    3. McHugh PR
    . “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. McKhann G,
    2. Drachman D,
    3. Folstein M, et al
    . Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939–44
    CrossRefPubMed
  38. 38.↵
    1. Leow AD,
    2. Klunder AD,
    3. Jack CR Jr., et al
    . Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 2006;31:627–40
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Jovicich J,
    2. Czanner S,
    3. Greve D, et al
    . Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 2006;30:436–43
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Sled JG,
    2. Zijdenbos AP,
    3. Evans AC
    . A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:87–97
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Mazziotta J,
    2. Toga A,
    3. Evans A, et al
    . A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001;356:1293–322
    Abstract/FREE Full Text
  42. 42.↵
    1. Hua X,
    2. Leow AD,
    3. Parikshak N, et al
    . Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage 2008;43:458–69
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Narr KL,
    2. van Erp TG,
    3. Cannon TD, et al
    . A twin study of genetic contributions to hippocampal morphology in schizophrenia. Neurobiol Dis 2002;11:83–95
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Thompson PM,
    2. Hayashi KM,
    3. De Zubicaray GI, et al
    . Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 2004;22:1754–66
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Narr KL,
    2. Thompson PM,
    3. Sharma T, et al
    . Three-dimensional mapping of temporo-limbic regions and the lateral ventricles in schizophrenia: gender effects. Biol Psychiatry 2001;50:84–97
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Mai JK,
    2. Paxinos G,
    3. Assheuer JK
    . Atlas of the Human Brain. San Diego: Elsevier Academic Press; 2004
  47. 47.↵
    1. Duvernoy HM
    . The Human Hippocampus: An Atlas of Applied Anatomy. Munich: Springer Verlag; 1988
  48. 48.↵
    1. Freund Y,
    2. Shapire R
    . A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences 1997;55:119–39
    CrossRefWeb of Science
  49. 49.↵
    1. Morra JH,
    2. Tu Z,
    3. Apostolova LG, et al
    . Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls. Neuroimage 2008;43:59–68
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Morra JH,
    2. Tu Z,
    3. Apostolova LG, et al
    . Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Neuroimage 2009;45:S3–15
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Gonzalez FA,
    2. Romero E
    1. Morra JH,
    2. Tu Z,
    3. Toga AW, et al
    . Machine learning for brain image segmentation. In: Gonzalez FA, Romero E, eds. Biomedical Image Analysis and Machine Learning Technologies. Hershey: Medical Information Science References; 2009
  52. 52.↵
    1. Wang L,
    2. Swank JS,
    3. Glick IE, et al
    . Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. Neuroimage 2003;20:667–82
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Becker JT,
    2. Davis SW,
    3. Hayashi KM, et al
    . Three-dimensional patterns of hippocampal atrophy in mild cognitive impairment. Arch Neurol 2006;63:97–101
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Frisoni GB,
    2. Sabattoli F,
    3. Lee AD, et al
    . In vivo neuropathology of the hippocampal formation in AD: a radial mapping MR-based study. Neuroimage 2006;32:104–10
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Frayne R,
    2. Goodyear BG,
    3. Dickhoff P, et al
    . Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 2003;38:385–402
    CrossRefPubMed
  56. 56.↵
    1. Tanenbaum LN
    . Clinical 3T MR imaging: mastering the challenges. Magn Reson Imaging Clin N Am 2006;14:1–15
    CrossRefPubMed
  57. 57.↵
    1. Das SR,
    2. Avants BB,
    3. Pluta J, et al
    . Measuring longitudinal change in the hippocampal formation from in vivo high-resolution T2-weighted MRI. Neuroimage 2012;60:1266–79
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Mueller SG,
    2. Stables L,
    3. Du AT, et al
    . Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiol Aging 2007;28:719–26
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (4)
American Journal of Neuroradiology
Vol. 36, Issue 4
1 Apr 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comparing 3T and 1.5T MRI for Mapping Hippocampal Atrophy in the Alzheimer's Disease Neuroimaging Initiative
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N. Chow, K.S. Hwang, S. Hurtz, A.E. Green, J.H. Somme, P.M. Thompson, D.A. Elashoff, C.R. Jack, M. Weiner, L.G. Apostolova
Comparing 3T and 1.5T MRI for Mapping Hippocampal Atrophy in the Alzheimer's Disease Neuroimaging Initiative
American Journal of Neuroradiology Apr 2015, 36 (4) 653-660; DOI: 10.3174/ajnr.A4228

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Comparing 3T and 1.5T MRI for Mapping Hippocampal Atrophy in the Alzheimer's Disease Neuroimaging Initiative
N. Chow, K.S. Hwang, S. Hurtz, A.E. Green, J.H. Somme, P.M. Thompson, D.A. Elashoff, C.R. Jack, M. Weiner, L.G. Apostolova
American Journal of Neuroradiology Apr 2015, 36 (4) 653-660; DOI: 10.3174/ajnr.A4228
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Longitudinal Surface-Based Morphometry Changes in the Hippocampus in Dementia
  • Enzyme Replacement Therapy for CLN2 Disease: MRI Volumetry Shows Significantly Slower Volume Loss Compared with a Natural History Cohort
  • Hippocampal subfield volume in relation to cerebrospinal fluid Amyloid-ss in early Alzheimers disease: Diagnostic Utility of 7T MRI
  • Adversarial Learning for MRI Reconstruction and Classification of Cognitively Impaired Individuals
  • Preliminary Validation of a Structural Magnetic Resonance Imaging Metric for Tracking Dementia-Related Neurodegeneration and Future Decline
  • Comparison of Hippocampal Subfield Segmentation Agreement between 2 Automated Protocols across the Adult Life Span
  • An artificial neural network model for clinical score prediction in Alzheimer disease using structural neuroimaging measures
  • 7T MRI for neurodegenerative dementias in vivo: a systematic review of the literature
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
  • Evaluating the Effects of White Matter Multiple Sclerosis Lesions on the Volume Estimation of 6 Brain Tissue Segmentation Methods
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire