Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Improving the Robustness of Deep Learning Models in Predicting Hematoma Expansion from Admission Head CT

Anh T. Tran, Gaby Abou Karam, Dorin Zeevi, Adnan I. Qureshi, Ajay Malhotra, Shahram Majidi, Santosh B. Murthy, Soojin Park, Despina Kontos, Guido J. Falcone, Kevin N. Sheth and Seyedmehdi Payabvash
American Journal of Neuroradiology June 2025, DOI: https://doi.org/10.3174/ajnr.A8650
Anh T. Tran
aFrom the Department of Radiology (A.T.T., D.Z., S.P.), NewYork-Presbyterian/Columbia University Irving Medical Center, Columbia University, New York, New York
bDepartment of Radiology and Biomedical Imaging (A.T.T., G.A.K., D.Z., A.M.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gaby Abou Karam
bDepartment of Radiology and Biomedical Imaging (A.T.T., G.A.K., D.Z., A.M.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gaby Abou Karam
Dorin Zeevi
aFrom the Department of Radiology (A.T.T., D.Z., S.P.), NewYork-Presbyterian/Columbia University Irving Medical Center, Columbia University, New York, New York
bDepartment of Radiology and Biomedical Imaging (A.T.T., G.A.K., D.Z., A.M.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adnan I. Qureshi
cZeenat Qureshi Stroke Institute and Department of Neurology (A.I.Q.), University of Missouri, Columbia, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Adnan I. Qureshi
Ajay Malhotra
bDepartment of Radiology and Biomedical Imaging (A.T.T., G.A.K., D.Z., A.M.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ajay Malhotra
Shahram Majidi
dDepartment of Neurosurgery, Icahn School of Medicine at Mount Sinai (S.M.), Mount Sinai Hospital, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shahram Majidi
Santosh B. Murthy
eDepartment of Neurology (S.B.M.), Weill Cornell Medical College, Cornell University, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Soojin Park
fDepartment of Neurology (S.P., D.K.), NewYork-Presbyterian/Columbia University Irving Medical Center, Columbia University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Despina Kontos
fDepartment of Neurology (S.P., D.K.), NewYork-Presbyterian/Columbia University Irving Medical Center, Columbia University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guido J. Falcone
gDepartment of Neurology (G.J.F. K.N.S.), Yale School of Medicine, New Haven, Connecticut.
hCenter for Brain and Mind Health (G.J.F., K.N.S.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kevin N. Sheth
gDepartment of Neurology (G.J.F. K.N.S.), Yale School of Medicine, New Haven, Connecticut.
hCenter for Brain and Mind Health (G.J.F., K.N.S.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kevin N. Sheth
Seyedmehdi Payabvash
aFrom the Department of Radiology (A.T.T., D.Z., S.P.), NewYork-Presbyterian/Columbia University Irving Medical Center, Columbia University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Seyedmehdi Payabvash
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Paschali M,
    2. Conjeti S,
    3. Navarro F, et al
    . Generalizability vs. robustness: adversarial examples for medical imaging. arXiv.org 2018. https://doi.org/10.48550/arXiv.1804.00504. Accessed May 22, 2025
  2. 2.↵
    1. Apostolidis KD,
    2. Papakostas GA
    . A survey on adversarial deep learning robustness in medical image analysis. Electronics 2021;10:2132 doi:10.3390/electronics10172132
    CrossRef
  3. 3.↵
    1. Xu W,
    2. Evans D,
    3. Qi Y
    . Feature squeezing: detecting adversarial examples in deep neural networks. arXiv.org 2017. https://doi.org/10.48550/arXiv.1704.01155. Accessed May 22, 2025
  4. 4.↵
    1. Li X,
    2. Zhu D
    . Robust Detection of Adversarial Attacks on Medical Images. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, Iowa. 2020:1154–58 doi:10.1109/ISBI45749.2020.9098628
    CrossRef
  5. 5.↵
    1. Joel MZ,
    2. Umrao S,
    3. Chang E, et al
    . Using adversarial images to assess the robustness of deep learning models trained on diagnostic images in oncology. JCO Clin Cancer Inform 2022;6:e2100170 doi:10.1200/CCI.21.00170 pmid:35271304
    CrossRefPubMed
  6. 6.↵
    1. Rodriguez D,
    2. Nayak T,
    3. Chen Y, et al
    . On the role of deep learning model complexity in adversarial robustness for medical images. BMC Med Inform Decis Mak 2022;22:160 doi:10.1186/s12911-022-01891-w pmid:35725429
    CrossRefPubMed
  7. 7.↵
    1. Abou Karam G,
    2. Chen MC,
    3. Zeevi D, et al
    . Time-dependent changes in hematoma expansion rate after supratentorial intracerebral hemorrhage and its relationship with neurological deterioration and functional outcome. Diagnostics (Basel) 2024;14:308 doi:10.3390/diagnostics14030308 pmid:38337824
    CrossRefPubMed
  8. 8.↵
    1. Li G,
    2. Lin Y,
    3. Yang J, et al
    ; INTERACT4 Investigators. Intensive ambulance-delivered blood-pressure reduction in hyperacute stroke. N Engl J Med 2024;390:1862–72 doi:10.1056/NEJMoa2314741 pmid:38752650
    CrossRefPubMed
  9. 9.↵
    1. Ma L,
    2. Hu X,
    3. Song L, et al
    ; INTERACT3 Investigators. The Third Intensive Care Bundle with Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT3): an international, stepped wedge cluster randomised controlled trial. Lancet 2023;402:27–40 doi:10.1016/S0140-6736(23)00806-1 pmid:37245517
    CrossRefPubMed
  10. 10.↵
    1. Haider SP,
    2. Qureshi AI,
    3. Jain A, et al
    . Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: independent validation and comparison with visual markers. Front Neurosci 2023;17:1225342 doi:10.3389/fnins.2023.1225342 pmid:37655013
    CrossRefPubMed
  11. 11.↵
    1. Tran AT,
    2. Zeevi T,
    3. Haider SP, et al
    . Uncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan. NPJ Digit Med 2024;7:26 doi:10.1038/s41746-024-01007-w pmid:38321131
    CrossRefPubMed
  12. 12.↵
    1. Qureshi AI,
    2. Palesch YY,
    3. Barsan WG, et al
    ; ATACH-2 Trial Investigators and the Neurological Emergency Treatment Trials Network. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 2016;375:1033–43 doi:10.1056/NEJMoa1603460 pmid:27276234
    CrossRefPubMed
  13. 13.↵
    1. Haider SP,
    2. Qureshi AI,
    3. Jain A, et al
    . The coronal plane maximum diameter of deep intracerebral hemorrhage predicts functional outcome more accurately than hematoma volume. Int J Stroke 2022;17:777–84 doi:10.1177/17474930211050749 pmid:34569877
    CrossRefPubMed
  14. 14.↵
    1. Dowlatshahi D,
    2. Demchuk AM,
    3. Flaherty ML, et al
    ; VISTA Collaboration. Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology 2011;76:1238–44 doi:10.1212/WNL.0b013e3182143317 pmid:21346218
    CrossRefPubMed
  15. 15.↵
    1. Rorden C,
    2. Bonilha L,
    3. Fridriksson J, et al
    . Age-specific CT and MRI templates for spatial normalization. Neuroimage 2012;61:957–65 doi:10.1016/j.neuroimage.2012.03.020 pmid:22440645
    CrossRefPubMed
  16. 16.↵
    1. Isensee F,
    2. Jaeger PF,
    3. Kohl SAA, et al
    . nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203–11 doi:10.1038/s41592-020-01008-z pmid:33288961
    CrossRefPubMed
  17. 17.↵
    1. Goodfellow IJ,
    2. Shlens J,
    3. Szegedy C
    . explaining and harnessing adversarial examples. arXiv.org 2014. https://arxiv.org/abs/1412.6572. Accessed May 22, 2025
  18. 18.↵
    1. Madry M AA,
    2. Schmidt L,
    3. Tsipras D, et al
    . Towards deep learning models resistant to adversarial attacks. arXiv.org 2017. https://arxiv.org/abs/1706.06083. Accessed May 22, 2025
  19. 19.↵
    1. Otsu N
    . A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9:62–66 doi:10.1109/TSMC.1979.4310076
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Jing Z,
    2. Tang B
    . Improved image segmentation method based on Otsu thresholding and level set techniques. J Phys: Conf Ser 2024;2813:012017 doi:10.1088/1742-6596/2813/1/012017
    CrossRef
  21. 21.↵
    1. Bortsova G,
    2. Gonzalez-Gonzalo C,
    3. Wetstein SC, et al
    . Adversarial attack vulnerability of medical image analysis systems: unexplored factors. Med Image Anal 2021;73:102141 doi:10.1016/j.media.2021.102141 pmid:34246850
    CrossRefPubMed
  22. 22.↵
    1. Muoka GW,
    2. Yi D,
    3. Ukwuoma CC, et al
    . A comprehensive review and analysis of deep learning-based medical image adversarial attack and defense. Mathematics 2023;11:4272 doi:10.3390/math11204272
    CrossRef
  23. 23.↵
    1. Gladstone DJ,
    2. Aviv RI,
    3. Demchuk AM, et al
    ; SPOTLIGHT and STOP-IT Investigators and Coordinators. Effect of recombinant activated coagulation factor vii on hemorrhage expansion among patients with spot sign-positive acute intracerebral hemorrhage: the SPOTLIGHT and STOP-IT Randomized Clinical Trials. JAMA Neurol 2019;76:1493–501 doi:10.1001/jamaneurol.2019.2636 pmid:31424491
    CrossRefPubMed
  24. 24.↵
    1. Meretoja A,
    2. Yassi N,
    3. Wu TY, et al
    . Tranexamic acid in patients with intracerebral haemorrhage (STOP-AUST): a multicentre, randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2020;19:980–87 doi:10.1016/S1474-4422(20)30369-0 pmid:33128912
    CrossRefPubMed
  25. 25.↵
    1. Naidech AM,
    2. Grotta J,
    3. Elm J, et al
    . Recombinant factor VIIa for hemorrhagic stroke treatment at earliest possible time (FASTEST): protocol for a phase III, double-blind, randomized, placebo-controlled trial. Int J Stroke 2022;17:806–09 doi:10.1177/17474930211042700 pmid:34427473
    CrossRefPubMed
  26. 26.↵
    1. Leasure AC,
    2. Qureshi AI,
    3. Murthy SB, et al
    . Intensive blood pressure reduction and perihematomal edema expansion in deep intracerebral hemorrhage. Stroke 2019;50:2016–22 doi:10.1161/STROKEAHA.119.024838 pmid:31272326
    CrossRefPubMed
  27. 27.↵
    1. Leasure AC,
    2. Qureshi AI,
    3. Murthy SB, et al
    . Association of intensive blood pressure reduction with risk of hematoma expansion in patients with deep intracerebral hemorrhage. JAMA Neurol 2019;76:949–55 doi:10.1001/jamaneurol.2019.1141 pmid:31081862
    CrossRefPubMed
  28. 28.↵
    1. Li Q,
    2. Warren AD,
    3. Qureshi AI, et al
    . Ultra-early blood pressure reduction attenuates hematoma growth and improves outcome in intracerebral hemorrhage. Ann Neurol 2020;88:388–95 doi:10.1002/ana.25793 pmid:32453453
    CrossRefPubMed
  29. 29.↵
    1. Teng L,
    2. Ren Q,
    3. Zhang P, et al
    . Artificial intelligence can effectively predict early hematoma expansion of intracerebral hemorrhage analyzing noncontrast computed tomography image. Front Aging Neurosci 2021;13:632138 doi:10.3389/fnagi.2021.632138 pmid:34122038
    CrossRefPubMed
  30. 30.↵
    1. Chen Q,
    2. Zhu D,
    3. Liu J, et al
    . Clinical-radiomics nomogram for risk estimation of early hematoma expansion after acute intracerebral hemorrhage. Acad Radiology 2021;28:307–17 doi:10.1016/j.acra.2020.02.021 pmid:32238303
    CrossRefPubMed
  31. 31.↵
    1. Ma C,
    2. Zhang Y,
    3. Niyazi T, et al
    . Radiomics for predicting hematoma expansion in patients with hypertensive intraparenchymal hematomas. Eur J Radiology 2019;115:10–15 doi:10.1016/j.ejrad.2019.04.001 pmid:31084753
    CrossRefPubMed
  32. 32.↵
    1. Liu S,
    2. Setio AAA,
    3. Ghesu FC, et al
    . No surprises: training robust lung nodule detection for low-dose CT scans by augmenting with adversarial attacks. IEEE Trans Med Imaging 2021;40:335–45 doi:10.1109/TMI.2020.3026261 pmid:32966215
    CrossRefPubMed
  33. 33.↵
    1. Vatian A,
    2. Gusarova N,
    3. Dobrenko N, et al
    . Impact of adversarial examples on the efficiency of interpretation and use of information from high-tech medical images. In: 24th Conference of Open Innovations Association (FRUCT), Moscow, Russian Federation. 2019:472–478 doi:10.23919/FRUCT.2019.8711974
    CrossRef
  34. 34.↵
    1. Hu L,
    2. Zhou DW,
    3. Guo XY, et al
    . Adversarial training for prostate cancer classification using magnetic resonance imaging. Quant Imaging Med Surg 2022;12:3276–87 doi:10.21037/qims-21-1089 pmid:35655831
    CrossRefPubMed
  35. 35.↵
    1. Han T,
    2. Nebelung S,
    3. Pedersoli F, et al
    . Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization. Nat Commun 2021;12:4315. doi:10.1038/s41467-021-24464-3 pmid:34262044
    CrossRefPubMed
  36. 36.↵
    1. Anastasiou T,
    2. Karagiorgou S,
    3. Petrou P, et al
    . Towards robustifying image classifiers against the perils of adversarial attacks on artificial intelligence systems. Sensors (Basel) 2022;22:6905 doi:10.3390/s22186905 pmid:36146258
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improving the Robustness of Deep Learning Models in Predicting Hematoma Expansion from Admission Head CT
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Anh T. Tran, Gaby Abou Karam, Dorin Zeevi, Adnan I. Qureshi, Ajay Malhotra, Shahram Majidi, Santosh B. Murthy, Soojin Park, Despina Kontos, Guido J. Falcone, Kevin N. Sheth, Seyedmehdi Payabvash
Improving the Robustness of Deep Learning Models in Predicting Hematoma Expansion from Admission Head CT
American Journal of Neuroradiology Jun 2025, DOI: 10.3174/ajnr.A8650

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Improving Hematoma Expansion Prediction Robustness
Anh T. Tran, Gaby Abou Karam, Dorin Zeevi, Adnan I. Qureshi, Ajay Malhotra, Shahram Majidi, Santosh B. Murthy, Soojin Park, Despina Kontos, Guido J. Falcone, Kevin N. Sheth, Seyedmehdi Payabvash
American Journal of Neuroradiology Jun 2025, DOI: 10.3174/ajnr.A8650
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire