Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Empowering Data Sharing in Neuroscience: A Deep Learning Deidentification Method for Pediatric Brain MRIs

Ariana M. Familiar, Neda Khalili, Nastaran Khalili, Cassidy Schuman, Evan Grove, Karthik Viswanathan, Jakob Seidlitz, Aaron Alexander-Bloch, Anna Zapaishchykova, Benjamin H. Kann, Arastoo Vossough, Phillip B. Storm, Adam C. Resnick, Anahita Fathi Kazerooni and Ali Nabavizadeh
American Journal of Neuroradiology April 2025, DOI: https://doi.org/10.3174/ajnr.A8581
Ariana M. Familiar
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Neurosurgery (A.M.F., Neda K., Nastaran K., K.V., P.B.S., A.C.R., A.F.K), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ariana M. Familiar
Neda Khalili
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Neurosurgery (A.M.F., Neda K., Nastaran K., K.V., P.B.S., A.C.R., A.F.K), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nastaran Khalili
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Neurosurgery (A.M.F., Neda K., Nastaran K., K.V., P.B.S., A.C.R., A.F.K), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cassidy Schuman
cSchool of Engineering and Applied Science (C.S., E.G.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Evan Grove
cSchool of Engineering and Applied Science (C.S., E.G.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karthik Viswanathan
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Neurosurgery (A.M.F., Neda K., Nastaran K., K.V., P.B.S., A.C.R., A.F.K), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jakob Seidlitz
dDepartment of Child and Adolescent Psychiatry and Behavioral Science (J.S., A.A.-B.), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
eDepartment of Psychiatry (J.S., A.A.-B.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aaron Alexander-Bloch
dDepartment of Child and Adolescent Psychiatry and Behavioral Science (J.S., A.A.-B.), The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
eDepartment of Psychiatry (J.S., A.A.-B.), University of Pennsylvania, Philadelphia, Pennsylvania
f Lifespan Brain Institute at the Children’s Hospital of Philadelphia and University of Pennsylvania (A.A.-B.), Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anna Zapaishchykova
gArtificial Intelligence in Medicine (AIM) Program (A.Z., B.H.K.), Mass General Brigham, Harvard Medical School, Boston, Massachusetts
hDepartment of Radiation Oncology (A.Z., B.H.K.), Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin H. Kann
gArtificial Intelligence in Medicine (AIM) Program (A.Z., B.H.K.), Mass General Brigham, Harvard Medical School, Boston, Massachusetts
hDepartment of Radiation Oncology (A.Z., B.H.K.), Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arastoo Vossough
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
iDivision of Radiology (A.V.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
jDepartment of Radiology, Perelman School of Medicine (A.V., A.N.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arastoo Vossough
Phillip B. Storm
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Neurosurgery (A.M.F., Neda K., Nastaran K., K.V., P.B.S., A.C.R., A.F.K), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam C. Resnick
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Neurosurgery (A.M.F., Neda K., Nastaran K., K.V., P.B.S., A.C.R., A.F.K), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anahita Fathi Kazerooni
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
bDepartment of Neurosurgery (A.M.F., Neda K., Nastaran K., K.V., P.B.S., A.C.R., A.F.K), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
kAI2D Center for AI and Data Science for Integrated Diagnostics (A.F.K.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anahita Fathi Kazerooni
Ali Nabavizadeh
aFrom the Center for Data-Driven Discovery in Biomedicine (D3b) (A.M.F., Neda K., Nastaran K., K.V., A.V., P.B.S., A.C.R., A.F.K., A.N.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
jDepartment of Radiology, Perelman School of Medicine (A.V., A.N.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ali Nabavizadeh
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Chen RJ,
    2. Wang JJ,
    3. Williamson DFK, et al
    . Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat Biomed Eng 2023;7:719–42 doi:10.1038/s41551-023-01056-8 pmid:37380750
    CrossRefPubMed
  2. 2.↵
    1. Wilkinson MD,
    2. Dumontier M,
    3. Aalbersberg IJ, et al
    . The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 2016;3:160018 doi:10.1038/sdata.2016.18 pmid:26978244
    CrossRefPubMed
  3. 3.↵
    1. Mueller SG,
    2. Weiner MW,
    3. Thal LJ, et al
    . Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 2005;1:55–66 doi:10.1016/j.jalz.2005.06.003 pmid:17476317
    CrossRefPubMed
  4. 4.↵
    1. Prior FW,
    2. Clark K,
    3. Commean P, et al
    . TCIA: an information resource to enable open science. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2013:1282–85 doi:10.1109/EMBC.2013.6609742 pmid:24109929
    CrossRefPubMed
  5. 5.↵
    1. Aberle DR,
    2. Adams AM,
    3. Berg CD, et al
    ; National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395–409 doi:10.1056/NEJMoa1102873 pmid:21714641
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Buda M,
    2. Saha A,
    3. Walsh R, et al
    . A data set and deep learning algorithm for the detection of masses and architectural distortions in digital breast tomosynthesis images. JAMA Netw Open 2021;4:e2119100 doi:10.1001/jamanetworkopen.2021.19100 pmid:34398205
    CrossRefPubMed
  7. 7.↵
    1. Schwarz CG,
    2. Kremers WK,
    3. Therneau TM, et al
    . Identification of anonymous MRI research participants with face-recognition software. N Engl J Med 2019;381:1684–86 doi:10.1056/NEJMc1908881 pmid:31644852
    CrossRefPubMed
  8. 8.↵
    1. Mazura JC,
    2. Juluru K,
    3. Chen JJ, et al
    . Facial recognition software success rates for the identification of 3D surface reconstructed facial images: implications for patient privacy and security. J Digit Imaging 2012;25:347–51 doi:10.1007/s10278-011-9429-3 pmid:22065158
    CrossRefPubMed
  9. 9.↵
    1. Abramian D,
    2. Eklund A
    . Refacing: Reconstructing Anonymized Facial Features Using GANS. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE; 2019:1104–08 doi:10.1109/ISBI.2019.8759515
    CrossRef
  10. 10.↵
    1. Bischoff‐Grethe A,
    2. Ozyurt IB,
    3. Busa E, et al
    . A technique for the deidentification of structural brain MR images. Hum Brain Mapp 2007;28:892–903 doi:10.1002/hbm.20312 pmid:17295313
    CrossRefPubMed
  11. 11.↵
    1. Gulban OF,
    2. Nielson D,
    3. Poldrack R, et al
    . poldracklab/pydeface: v2. 0.0. Zenodo https://doi.org/105281/zenodo. 2019;3524401
  12. 12.↵
    1. Alfaro-Almagro F,
    2. Jenkinson M,
    3. Bangerter NK, et al
    . Image processing and quality control for the first 10,000 brain imaging datasets from UK biobank. NeuroImage 2018;166:400–24 doi:10.1016/j.neuroimage.2017.10.034 pmid:29079522
    CrossRefPubMed
  13. 13.↵
    1. Khazane A,
    2. Hoachuck J,
    3. Gorgolewski KJ, et al
    . DeepDefacer: automatic removal of facial features via U-Net image segmentation. arXiv.org 2022. http://arxiv.org/abs/2205.15536. Accessed January 26, 2024.
  14. 14.↵
    1. Milchenko M,
    2. Marcus D
    . Obscuring surface anatomy in volumetric imaging data. Neuroinform 2013;11:65–75 doi:10.1007/s12021-012-9160-3 pmid:22968671
    CrossRefPubMed
  15. 15.↵
    1. de Sitter A,
    2. Visser M,
    3. Brouwer I, et al
    ; MAGNIMS Study Group and Alzheimer’s Disease Neuroimaging Initiative. Facing privacy in neuroimaging: removing facial features degrades performance of image analysis methods. Eur Radiol 2020;30:1062–74 doi:10.1007/s00330-019-06459-3 pmid:31691120
    CrossRefPubMed
  16. 16.↵
    1. Rubbert C,
    2. Wolf L,
    3. Turowski B, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. Impact of defacing on automated brain atrophy estimation. Insights Imaging 2022;13:54 doi:10.1186/s13244-022-01195-7 pmid:35348936
    CrossRefPubMed
  17. 17.↵
    1. Theyers AE,
    2. Zamyadi M,
    3. O’Reilly M, et al
    . Multisite comparison of MRI defacing software across multiple cohorts. Front Psychiatry 2021;12:617997 doi:10.3389/fpsyt.2021.617997 pmid:33716819
    CrossRefPubMed
  18. 18.↵
    1. Buimer EEL,
    2. Schnack HG,
    3. Caspi Y, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. De-identification procedures for magnetic resonance images and the impact on structural brain measures at different ages. Hum Brain Mapp 2021;42:3643–55 doi:10.1002/hbm.25459 pmid:33973694
    CrossRefPubMed
  19. 19.↵
    1. Familiar AM,
    2. Kazerooni AF,
    3. Anderson H, et al
    . A multi-institutional pediatric data set of clinical radiology MRIs by the Children’s Brain Tumor Network. arXiv.org 2023. https://arxiv.org/abs/10.48550/arXiv.2310.01413. October 15, 2024
  20. 20.↵
    1. Schabdach JM,
    2. Schmitt JE,
    3. Sotardi S, et al
    . Brain growth charts of “clinical controls” for quantitative analysis of clinically acquired brain MRI. Radiology 2023;309:e230096
    CrossRefPubMed
  21. 21.↵
    1. Lilly JV,
    2. Rokita JL,
    3. Mason JL, et al
    . The Children’s Brain Tumor Network (CBTN) - Accelerating research in pediatric central nervous system tumors through collaboration and open science. Neoplasia 2023;35:100846 doi:10.1016/j.neo.2022.100846 pmid:36335802
    CrossRefPubMed
  22. 22.↵
    MiDeFace. Free Surfer Wiki. Accessed March 17, 2023. https://surfer.nmr.mgh.harvard.edu/fswiki/MiDeFace#Notes
  23. 23.↵
    1. Yushkevich PA,
    2. Pashchinskiy A,
    3. Oguz I, et al
    . User-guided segmentation of multi-modality medical imaging datasets with ITK-SNAP. Neuroinform 2019;17:83–102 doi:10.1007/s12021-018-9385-x pmid:29946897
    CrossRefPubMed
  24. 24.↵
    1. Zapaishchykova A,
    2. Liu KX,
    3. Saraf A, et al
    . Automated temporalis muscle quantification and growth charts for children through adulthood. Nat Commun 2023;14:6863 doi:10.1038/s41467-023-42501-1 pmid:37945573
    CrossRefPubMed
  25. 25.↵
    1. Isensee F,
    2. Jaeger PF,
    3. Kohl SAA, et al
    . nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203–11 doi:10.1038/s41592-020-01008-z pmid:33288961
    CrossRefPubMed
  26. 26.↵
    1. Rohlfing T,
    2. Zahr NM,
    3. Sullivan EV, et al
    . The SRI24 multichannel atlas of normal adult human brain structure. Hum Brain Mapp 2010;31:798–819 doi:10.1002/hbm.20906 pmid:20017133
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Yushkevich PA,
    2. Pluta J,
    3. Wang H, et al
    . Fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 Tesla and 7 Tesla T2‐weighted MRI. Alzheimers Dement 2016;12:P126–27
  28. 28.↵
    1. Crimi A,
    2. Bakas S
    1. Pati S,
    2. Singh A,
    3. Rathore S, et al
    . The Cancer Imaging Phenomics Toolkit (CaPTk): technical overview. In: Crimi A, Bakas S, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Lecture Notes in Computer Science. Springer-Verlag International Publishing; 2020:380–94 doi:10.1007/978-3-030-46643-5_38 pmid:32754723
    CrossRefPubMed
  29. 29.↵
    1. Fathi Kazerooni A,
    2. Arif S,
    3. Madhogarhia R, et al
    . Automated tumor segmentation and brain tissue extraction from multiparametric MRI of pediatric brain tumors: a multi-institutional study. Neurooncol Adv 2023;5:vdad027 doi:10.1093/noajnl/vdad027 pmid:37051331
    CrossRefPubMed
  30. 30.↵
    1. Vossough A,
    2. Khalili N,
    3. Familiar AM, et al
    . Training and comparison of nnU-Net and DeepMedic methods for autosegmentation of pediatric brain tumors. AJNR Am J Neuroradiol 2024;45:1081–89 doi:10.3174/ajnr.A8293 pmid:38724204
    Abstract/FREE Full Text
  31. 31.↵
    1. Fischl B
    . FreeSurfer. Neuroimage 2012;62:774–81 doi:10.1016/j.neuroimage.2012.01.021 pmid:22248573
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Tejani AS,
    2. Klontzas ME,
    3. Gatti AA, et al
    ; CLAIM 2024 Update Panel. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 update. Radiol Artif Intell 2024;6:e240300 doi:10.1148/ryai.240300 pmid:38809149
    CrossRefPubMed
  33. 33.↵
    1. Mongan J,
    2. Moy L,
    3. Charles E Kahn J
    . Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a Guide for Authors and Reviewers. Radiol Artif Intell 2020;2:e200029 doi:10.1148/ryai.2020200029 pmid:33937821
    CrossRefPubMed
  34. 34.↵
    1. Pham N,
    2. Hill V,
    3. Rauschecker A, et al
    . Critical appraisal of artificial intelligence–enabled imaging tools using the levels of evidence system. AJNR Am J Neuroradiol 2023;44:E21–28 doi:10.3174/ajnr.A7850 pmid:37080722
    Abstract/FREE Full Text
  35. 35.↵
    1. Lee B,
    2. Bae YJ,
    3. Jeong WJ, et al
    . Temporalis muscle thickness as an indicator of sarcopenia predicts progression-free survival in head and neck squamous cell carcinoma. Sci Rep 2021;11:19717 doi:10.1038/s41598-021-99201-3 pmid:34611230
    CrossRefPubMed
  36. 36.↵
    1. Cho J,
    2. Park M,
    3. Moon WJ, et al
    . Sarcopenia in patients with dementia: correlation of temporalis muscle thickness with appendicular muscle mass. Neurol Sci 2022;43:3089–95 doi:10.1007/s10072-021-05728-8 pmid:34846582
    CrossRefPubMed
  37. 37.↵
    1. Muglia R,
    2. Simonelli M,
    3. Pessina F, et al
    . Prognostic relevance of temporal muscle thickness as a marker of sarcopenia in patients with glioblastoma at diagnosis. Eur Radiol 2021;31:4079–86 doi:10.1007/s00330-020-07471-8 pmid:33201284
    CrossRefPubMed
  38. 38.↵
    1. Nozoe M,
    2. Kubo H,
    3. Kanai M, et al
    . Reliability and validity of measuring temporal muscle thickness as the evaluation of sarcopenia risk and the relationship with functional outcome in older patients with acute stroke. Clin Neurol Neurosurg 2021;201:106444 doi:10.1016/j.clineuro.2020.106444 pmid:33395619
    CrossRefPubMed
  39. 39.↵
    1. Schwarz CG,
    2. Kremers WK,
    3. Wiste HJ, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. Changing the face of neuroimaging research: comparing a new MRI de-facing technique with popular alternatives. NeuroImage 2021;231:117845 doi:10.1016/j.neuroimage.2021.117845 pmid:33582276
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Empowering Data Sharing in Neuroscience: A Deep Learning Deidentification Method for Pediatric Brain MRIs
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Ariana M. Familiar, Neda Khalili, Nastaran Khalili, Cassidy Schuman, Evan Grove, Karthik Viswanathan, Jakob Seidlitz, Aaron Alexander-Bloch, Anna Zapaishchykova, Benjamin H. Kann, Arastoo Vossough, Phillip B. Storm, Adam C. Resnick, Anahita Fathi Kazerooni, Ali Nabavizadeh
Empowering Data Sharing in Neuroscience: A Deep Learning Deidentification Method for Pediatric Brain MRIs
American Journal of Neuroradiology Apr 2025, DOI: 10.3174/ajnr.A8581

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
An AI De-identification Method for Pediatric MRIs
Ariana M. Familiar, Neda Khalili, Nastaran Khalili, Cassidy Schuman, Evan Grove, Karthik Viswanathan, Jakob Seidlitz, Aaron Alexander-Bloch, Anna Zapaishchykova, Benjamin H. Kann, Arastoo Vossough, Phillip B. Storm, Adam C. Resnick, Anahita Fathi Kazerooni, Ali Nabavizadeh
American Journal of Neuroradiology Apr 2025, DOI: 10.3174/ajnr.A8581
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Improving Hematoma Expansion Prediction Robustness
  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire