Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Comprehensive Segmentation of Gray Matter Structures on T1-Weighted Brain MRI: A Comparative Study of Convolutional Neural Network, Convolutional Neural Network Hybrid-Transformer or -Mamba Architectures

Yujia Wei, Jaidip Manikrao Jagtap, Yashbir Singh, Bardia Khosravi, Jason Cai, Jeffrey L. Gunter and Bradley J. Erickson
American Journal of Neuroradiology March 2025, DOI: https://doi.org/10.3174/ajnr.A8544
Yujia Wei
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yujia Wei
Jaidip Manikrao Jagtap
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jaidip Manikrao Jagtap
Yashbir Singh
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bardia Khosravi
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason Cai
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jason Cai
Jeffrey L. Gunter
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeffrey L. Gunter
Bradley J. Erickson
aFrom the Department of Radiology, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bradley J. Erickson
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Radue E-W,
    2. Barkhof F,
    3. Kappos L, et al
    . Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis. Neurology 2015;84:784–93 doi:10.1212/WNL.0000000000001281 pmid:25632085
    CrossRefPubMed
  2. 2.↵
    1. Mora F,
    2. Segovia G,
    3. del Arco A
    . Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 2007;55:78–88 doi:10.1016/j.brainresrev.2007.03.011 pmid:17561265
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Yu Q,
    2. Mai Y,
    3. Ruan Y, et al
    . An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s disease. Alzheimers Res Ther 2021;13:23
    CrossRefPubMed
  4. 4.↵
    1. Adegun AA,
    2. Viriri S,
    3. Ogundokun RO
    . Deep learning approach for medical image analysis. Comput Intell Neurosci 2021;2021:e6215281 doi:10.1155/2021/6215281
    CrossRef
  5. 5.↵
    1. Chen S,
    2. Qiu C,
    3. Yang W, et al
    . Multiresolution aggregation transformer UNet based on multiscale input and coordinate attention for medical image segmentation. Sensors 2022;22:3820 doi:10.3390/s22103820
    CrossRefPubMed
  6. 6.↵
    1. Strudel R,
    2. Garcia R,
    3. Laptev I, et al
    . Segmenter: transformer for semantic segmentation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: 2021:7242–7252 doi:10.1109/ICCV48922.2021.00717
    CrossRef
  7. 7.↵
    1. Dosovitskiy A,
    2. Beyer L,
    3. Kolesnikov A, et al
    . An image is worth 16x16 words: transformers for image recognition at scale. arxiv [Epub ahead of print] June 3, 2021. Available on: https://arxiv.org/abs/2010.11929.
  8. 8.↵
    1. Hatamizadeh A,
    2. Tang Y,
    3. Nath V, et al
    . UNETR: transformers for 3D medical image segmentation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI: 2022:1748–58 doi:10.1109/WACV51458.2022.00181
    CrossRef
  9. 9.↵
    1. Crimi A,
    2. Bakas S
    1. Hatamizadeh A,
    2. Nath V,
    3. Tang Y, et al
    . Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi A, Bakas S, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer-Verlag International Publishing 2022:272–84
  10. 10.↵
    1. Gu A,
    2. Goel K,
    3. Ré C
    . Efficiently modeling long sequences with structured state spaces. arxiv October 31, 2021 doi:10.48550/arXiv.2111.00396
    CrossRef
  11. 11.↵
    1. Gu A,
    2. Dao T
    . Mamba: linear-time sequence modeling with selective state spaces. arxiv December 1, 2023 doi:10.48550/arXiv.2312.00752
    CrossRef
  12. 12.↵
    1. Crimi A,
    2. Bakas S,
    3. Kuijf H
    1. Myronenko A, et al
    . 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi A, Bakas S, Kuijf H, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer-Verlag International Publishing; 2019:311–20
  13. 13.↵
    1. Ma J,
    2. Li F,
    3. U-Mamba WB
    . Enhancing long-range dependency for biomedical image segmentation. arxiv [Epub ahead of print] January 9, 2024. Available on: https://arxiv.org/pdf/2401.04722.
  14. 14.↵
    1. Avants BB,
    2. Tustison NJ,
    3. Stauffer M, et al
    . The Insight ToolKit image registration framework. Front Neuroinform 2014;8:44 doi:10.3389/fninf.2014.00044 pmid:24817849
    CrossRefPubMed
  15. 15.↵
    1. Isensee F,
    2. Schell M,
    3. Pflueger I, et al
    . Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 2019;40:4952–64 doi:10.1002/hbm.24750 pmid:31403237
    CrossRefPubMed
  16. 16.↵
    1. Isensee F,
    2. Jaeger PF,
    3. Kohl SAA, et al
    . nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203–11 doi:10.1038/s41592-020-01008-z pmid:33288961
    CrossRefPubMed
  17. 17.↵
    1. Persson K,
    2. Bohbot VD,
    3. Bogdanovic N, et al
    . Finding of increased caudate nucleus in patients with Alzheimer’s disease. Acta Neurol Scand 2018;137:224–32 doi:10.1111/ane.12800 pmid:28741672
    CrossRefPubMed
  18. 18.↵
    1. Kahraman AT,
    2. Fröding T,
    3. Toumpanakis D, et al
    . Enhanced classification performance using deep learning based segmentation for pulmonary embolism detection in CT angiography. Heliyon 2024:10:e38118.
    CrossRef
  19. 19.↵
    1. Yu W,
    2. Wang X
    . MambaOut: do we really need Mamba for vision? May 13, 2024. doi:10.48550/arXiv.2405.07992
    CrossRef
  20. 20.↵
    1. Kim R,
    2. Müller S,
    3. Garcia TP
    . svReg: structural varying-coefficient regression to differentiate how regional brain atrophy affects motor impairment for Huntington disease severity groups. Biom J 2021;63:1254–71 doi:10.1002/bimj.202000312 pmid:33871905
    CrossRefPubMed
  21. 21.↵
    1. Moazzami K,
    2. Shao IY,
    3. Chen LY, et al
    . Atrial fibrillation, brain volumes, and subclinical cerebrovascular disease (from the Atherosclerosis Risk in Communities Neurocognitive Study [ARIC-NCS]). Am J Cardiol 2020;125:222–28 doi:10.1016/j.amjcard.2019.10.010 pmid:31771759
    CrossRefPubMed
  22. 22.↵
    1. Walker KA,
    2. Gottesman RF,
    3. Wu A, et al
    . Association of hospitalization, critical illness, and infection with brain structure in older adults. J Am Geriatr Soc 2018;66:1919–26 doi:10.1111/jgs.15470 pmid:30251380
    CrossRefPubMed
  23. 23.↵
    1. Rovaris M,
    2. Inglese M,
    3. van Schijndel RA, et al
    . Sensitivity and reproducibility of volume change measurements of different brain portions on magnetic resonance imaging in patients with multiple sclerosis. J Neurol 2000;247:960–65 doi:10.1007/s004150070054 pmid:11200690
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. He H,
    2. Liang L,
    3. Tang T, et al
    . Progressive brain changes in Parkinson’s disease: a meta-analysis of structural magnetic resonance imaging studies. Brain Res 2020;1740:146847 doi:10.1016/j.brainres.2020.146847 pmid:32330518
    CrossRefPubMed
  25. 25.↵
    1. Chen X-Y,
    2. Chen Z-Y,
    3. Dong Z, et al
    . Regional volume changes of the brain in migraine chronification. Neural Regen Res 2020;15:1701–08 doi:10.4103/1673-5374.276360 pmid:32209774
    CrossRefPubMed
  26. 26.↵
    1. Poulin SP,
    2. Dautoff R,
    3. Morris JC, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res 2011;194:7–13 doi:10.1016/j.pscychresns.2011.06.014 pmid:21920712
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Holroyd S,
    2. Shepherd ML,
    3. Downs JH
    . Occipital atrophy is associated with visual hallucinations in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 2000;12:25–28 doi:10.1176/jnp.12.1.25 pmid:10678508
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Convit A,
    2. De Leon MJ,
    3. Tarshish C, et al
    . Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging 1997;18:131–38 doi:10.1016/s0197-4580(97)00001-8 pmid:9258889
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Foundas AL,
    2. Leonard CM,
    3. Mahoney SM, et al
    . Atrophy of the hippocampus, parietal cortex, and insula in Alzheimer’s disease: a volumetric magnetic resonance imaging study. Cogn Behav Neurol 1997;10:81
  30. 30.↵
    1. Visser P,
    2. Verhey F,
    3. Hofman P, et al
    . Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 2002;72:491–97 doi:10.1136/jnnp.72.4.491 pmid:11909909
    Abstract/FREE Full Text
  31. 31.↵
    1. Devanand DP,
    2. Pradhaban G,
    3. Liu X, et al
    . Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 2007;68:828–36 doi:10.1212/01.wnl.0000256697.20968.d7 pmid:17353470
    Abstract/FREE Full Text
  32. 32.↵
    1. Köhler S,
    2. Black SE,
    3. Sinden M, et al
    . Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer’s disease. Neuropsychologia 1998;36:901–14 doi:10.1016/s0028-3932(98)00017-7 pmid:9740363
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Schuff N,
    2. Woerner N,
    3. Boreta L, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 2009;132:1067–77 doi:10.1093/brain/awp007 pmid:19251758
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Schwarz CG,
    2. Gunter JL,
    3. Wiste HJ, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer’s disease severity. Neuroimage Clin 2016;11:802–12 doi:10.1016/j.nicl.2016.05.017 pmid:28050342
    CrossRefPubMed
  35. 35.↵
    1. Collins GS,
    2. Reitsma JB,
    3. Altman DG, et al
    . Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med 2015;162:55–63 doi:10.7326/M14-0697 pmid:25560714
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Comprehensive Segmentation of Gray Matter Structures on T1-Weighted Brain MRI: A Comparative Study of Convolutional Neural Network, Convolutional Neural Network Hybrid-Transformer or -Mamba Architectures
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Yujia Wei, Jaidip Manikrao Jagtap, Yashbir Singh, Bardia Khosravi, Jason Cai, Jeffrey L. Gunter, Bradley J. Erickson
Comprehensive Segmentation of Gray Matter Structures on T1-Weighted Brain MRI: A Comparative Study of Convolutional Neural Network, Convolutional Neural Network Hybrid-Transformer or -Mamba Architectures
American Journal of Neuroradiology Mar 2025, DOI: 10.3174/ajnr.A8544

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Gray Matter Segmentation: CNN vs Hybrid Models
Yujia Wei, Jaidip Manikrao Jagtap, Yashbir Singh, Bardia Khosravi, Jason Cai, Jeffrey L. Gunter, Bradley J. Erickson
American Journal of Neuroradiology Mar 2025, DOI: 10.3174/ajnr.A8544
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Improving Hematoma Expansion Prediction Robustness
  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire