Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Evaluating Biases and Quality Issues in Intermodality Image Translation Studies for Neuroradiology: A Systematic Review

Shannon L. Walston, Hiroyuki Tatekawa, Hirotaka Takita, Yukio Miki and Daiju Ueda
American Journal of Neuroradiology April 2024, DOI: https://doi.org/10.3174/ajnr.A8211
Shannon L. Walston
aFrom the Department of Diagnostic and Interventional Radiology (S.L.W., H.Tatekawa, H.Takita, Y.M., D.U.), Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shannon L. Walston
Hiroyuki Tatekawa
aFrom the Department of Diagnostic and Interventional Radiology (S.L.W., H.Tatekawa, H.Takita, Y.M., D.U.), Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hiroyuki Tatekawa
Hirotaka Takita
aFrom the Department of Diagnostic and Interventional Radiology (S.L.W., H.Tatekawa, H.Takita, Y.M., D.U.), Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hirotaka Takita
Yukio Miki
aFrom the Department of Diagnostic and Interventional Radiology (S.L.W., H.Tatekawa, H.Takita, Y.M., D.U.), Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daiju Ueda
aFrom the Department of Diagnostic and Interventional Radiology (S.L.W., H.Tatekawa, H.Takita, Y.M., D.U.), Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
bSmart Life Science Lab (D.U.), Center for Health Science Innovation, Osaka Metropolitan University, Osaka, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daiju Ueda
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Wolterink JM,
    2. Mukhopadhyay A,
    3. Leiner T, et al
    . Generative adversarial networks: a primer for radiologists. Radiographics 2021;41:840–57 doi:10.1148/rg.2021200151 pmid:33891522
    CrossRefPubMed
  2. 2.↵
    1. Ueda D,
    2. Shimazaki A,
    3. Miki Y
    . Technical and clinical overview of deep learning in radiology. Jpn J Radiol 2019;37:15–33 doi:10.1007/s11604-018-0795-3 pmid:30506448
    CrossRefPubMed
  3. 3.↵
    1. Matheny ME,
    2. Whicher D,
    3. Thadaney Israni S
    . Artificial Intelligence in Health Care: A Report From the National Academy of Medicine. JAMA 2020;323:509–10 doi:10.1001/jama.2019.21579 pmid:31845963
    CrossRefPubMed
  4. 4.↵
    1. Laino ME,
    2. Cancian P,
    3. Politi LS, et al
    . Generative adversarial networks in brain imaging: a narrative review. J Imaging 2022;8:83 doi:10.3390/jimaging8040083 pmid:35448210
    CrossRefPubMed
  5. 5.↵
    1. Seymour ZA,
    2. Fogh SE,
    3. Westcott SK, et al
    . Interval from imaging to treatment delivery in the radiation surgery age: how long is too long? Int J Radiat Oncol Biol Phys 2015;93:126–32 doi:10.1016/j.ijrobp.2015.05.001 pmid:26279030
    CrossRefPubMed
  6. 6.↵
    1. Sorin V,
    2. Barash Y,
    3. Konen E, et al
    . Creating artificial images for radiology applications using generative adversarial networks (GANs): a systematic review. Acad Radiol 2020;27:1175–85 doi:10.1016/j.acra.2019.12.024 pmid:32035758
    CrossRefPubMed
  7. 7.↵
    1. Feng E,
    2. Qin P,
    3. Chai R, et al
    . MRI generated from CT for acute ischemic stroke combining radiomics and generative adversarial networks. IEEE J Biomed Health Inform 2022;26:6047–57 doi:10.1109/JBHI.2022.3205961 pmid:36094997
    CrossRefPubMed
  8. 8.↵
    1. Garzon G,
    2. Gomez S,
    3. Mantilla D, et al
    . A deep CT to MRI unpaired translation that preserve ischemic stroke lesions. Conf Proc IEEE Eng Med Biol Soc 2022;2022:2708–11 doi:10.1109/EMBC48229.2022.9871154 pmid:36086325
    CrossRefPubMed
  9. 9.↵
    1. Gutierrez A,
    2. Tuladhar A,
    3. Wilms M, et al
    . Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients. Int J Comput Assist Radiol Surg 2023;18:827–36 doi:10.1007/s11548-022-02828-4 pmid:36607506
    CrossRefPubMed
  10. 10.↵
    1. Rubin J,
    2. Abulnaga SM
    . CT-to-MR conditional generative adversarial networks for ischemic stroke lesion segmentation. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI), June 10–13, 2019. Xi’an, China doi:10.1109/ICHI.2019.8904574
    CrossRef
  11. 11.↵
    1. Bontempi D,
    2. Nuernberg L,
    3. Krishnaswamy D, et al
    . Transparent and Reproducible AI-based Medical Imaging Pipelines Using the Cloud. Research Square. https://doi.org/10.21203/rs.3.rs-3142996/v1. Accessed October 1, 2023
  12. 12.↵
    1. Kim DW,
    2. Jang HY,
    3. Kim KW, et al
    . Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405–10 doi:10.3348/kjr.2019.0025 pmid:30799571
    CrossRefPubMed
  13. 13.↵
    1. England JR,
    2. Cheng PM
    . Artificial intelligence for medical image analysis: a guide for authors and reviewers. AJR Am J Roentgenol 2019;212:513–19 doi:10.2214/AJR.18.20490 pmid:30557049
    CrossRefPubMed
  14. 14.↵
    1. Sivanesan U,
    2. Wu K,
    3. McInnes MD, et al
    . Checklist for artificial intelligence in medical imaging reporting adherence in peer-reviewed and preprint manuscripts with the highest altmetric attention scores: a meta-research study. Can Assoc Radiol J 2023;74:334–42 doi:10.1177/08465371221134056 pmid:36301600
    CrossRefPubMed
  15. 15.↵
    1. Mongan J,
    2. Moy L,
    3. Kahn CE Jr.
    . Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2020;2:e200029 doi:10.1148/ryai.2020200029 pmid:33937821
    CrossRefPubMed
  16. 16.↵
    1. Wolff RF,
    2. Moons KG,
    3. Riley RD, et al
    ; PROBAST Group. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 2019;170:51–58 doi:10.7326/M18-1376 pmid:30596875
    CrossRefPubMed
  17. 17.↵
    1. Klontzas ME,
    2. Gatti AA,
    3. Tejani AS, et al
    . AI reporting guidelines: how to select the best one for your research. RadiolArtif Intell 2023;5:e230055 doi:10.1148/ryai.230055 pmid:37293341
    CrossRefPubMed
  18. 18.↵
    1. Ueda D,
    2. Kakinuma T,
    3. Fujita S, et al
    . Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol 2024;42:3–15 doi:10.1007/s11604-023-01474-3 pmid:37540463
    CrossRefPubMed
  19. 19.↵
    1. Page MJ,
    2. Moher D,
    3. Bossuyt PM, et al
    . PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021;372:n160 doi:10.1136/bmj.n160 pmid:33781993
    FREE Full Text
  20. 20.↵
    1. Kuo RY,
    2. Harrison C,
    3. Curran T-A, et al
    . Artificial intelligence in fracture detection: a systematic review and meta-analysis. Radiology 2022;304:50–62 doi:10.1148/radiol.211785 pmid:35348381
    CrossRefPubMed
  21. 21.↵
    1. Nagendran M,
    2. Chen Y,
    3. Lovejoy CA, et al
    . Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 2020;368:m689 doi:10.1136/bmj.m689 pmid:32213531
    Abstract/FREE Full Text
  22. 22.↵
    1. Patterson D,
    2. Snyder L,
    3. Ullman J
    . Evaluating computer scientists and engineers for promotion and tenure. Computer Research Association 1999 Aug 1. [Epub ahead of print]
  23. 23.↵
    1. Vardi MY
    . Conferences vs. journals in computing research. Communications of ACM 2009;52:5 doi:10.1145/1506409.1506410
    CrossRef
  24. 24.↵
    1. Fortnow L
    . Viewpoint: Time for computer science to grow up. Communications of ACM 2009;52:33–35 doi:10.1145/1536616.1536631
    CrossRef
  25. 25.↵
    1. Choi H,
    2. Lee DS
    , Alzheimer’s Disease Neuroimaging Initiative. Generation of structural MR images from amyloid PET: application to MR-less quantification. J Nucl Med 2018;59:1111–17 doi:10.2967/jnumed.117.199414 pmid:29217736
    Abstract/FREE Full Text
  26. 26.↵
    1. Pan Y,
    2. Liu M,
    3. Lian C, et al
    . Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. Med Image Comput Comput Assist Interv 2018;11072:455–63 doi:10.1007/978-3-030-00931-1_52 pmid:34355223
    CrossRefPubMed
  27. 27.↵
    1. Takita H,
    2. Matsumoto T,
    3. Tatekawa H, et al
    . AI-based virtual synthesis of methionine PET from contrast-enhanced MRI: development and external validation study. Radiology 2023;308:e223016 doi:10.1148/radiol.223016 pmid:37526545
    CrossRefPubMed
  28. 28.↵
    1. Park SH,
    2. Han K
    . Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–09 doi:10.1148/radiol.2017171920 pmid:29309734
    CrossRefPubMed
  29. 29.↵
    1. Collins GS,
    2. Dhiman P,
    3. Andaur Navarro CL, et al
    . Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021;11:e048008 doi:10.1136/bmjopen-2020-048008 pmid:34244270
    Abstract/FREE Full Text
  30. 30.↵
    1. Bossuyt PM,
    2. Reitsma JB,
    3. Bruns DE, et al
    ; STARD Group. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015;351:h5527 doi:10.1136/bmj.h5527 pmid:26511519
    FREE Full Text
  31. 31.↵
    1. Moons KG,
    2. Altman DG,
    3. Reitsma JB, et al
    ; Transparent Reporting of a Multivariate Prediction Model for Individual Prognosis or Development Initiative. New guideline for the reporting of studies developing, validating, or updating a multivariable clinical prediction model: the tripod statement. Adv Anat Pathol 2015;22:303–05 doi:10.1097/PAP.0000000000000072 pmid:26262512
    CrossRefPubMed
  32. 32.↵
    1. Willemink MJ,
    2. Koszek WA,
    3. Hardell C, et al
    . Preparing medical imaging data for machine learning. Radiology 2020;295:4–15 doi:10.1148/radiol.2020192224 pmid:32068507
    CrossRefPubMed
  33. 33.↵
    1. Wang T,
    2. Lei Y,
    3. Fu Y, et al
    . A review on medical imaging synthesis using deep learning and its clinical applications. J Appl Clin Med Phys 2021;22:11–36 doi:10.1002/acm2.13121 pmid:33305538
    CrossRefPubMed
  34. 34.↵
    1. Yonezawa H,
    2. Ueda D,
    3. Yamamoto A, et al
    . Maskless 2-dimensional digital subtraction angiography generation model for abdominal vasculature using deep learning. J Vasc Interv Radiol 2022;33:845–51.e8 doi:10.1016/j.jvir.2022.03.010 pmid:35311665
    CrossRefPubMed
  35. 35.↵
    1. Tejani AS,
    2. Klontzas ME,
    3. Gatti AA, et al
    . Updating the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) for reporting AI research. Nat Mach Intell 2023;5:950–51 doi:10.1038/s42256-023-00717-2
    CrossRef
  36. 36.↵
    1. Sounderajah V,
    2. Ashrafian H,
    3. Golub RM, et al
    ; STARD-AI Steering Committee. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021;11:e047709 doi:10.1136/bmjopen-2020-047709 pmid:34183345
    Abstract/FREE Full Text
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluating Biases and Quality Issues in Intermodality Image Translation Studies for Neuroradiology: A Systematic Review
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Shannon L. Walston, Hiroyuki Tatekawa, Hirotaka Takita, Yukio Miki, Daiju Ueda
Evaluating Biases and Quality Issues in Intermodality Image Translation Studies for Neuroradiology: A Systematic Review
American Journal of Neuroradiology Apr 2024, DOI: 10.3174/ajnr.A8211

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Evaluating Biases and Quality Issues in Intermodality Image Translation Studies for Neuroradiology: A Systematic Review
Shannon L. Walston, Hiroyuki Tatekawa, Hirotaka Takita, Yukio Miki, Daiju Ueda
American Journal of Neuroradiology Apr 2024, DOI: 10.3174/ajnr.A8211
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATION:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Improving Hematoma Expansion Prediction Robustness
  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire