Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleULTRA-HIGH-FIELD MRI/IMAGING OF EPILEPSY/DEMYELINATING DISEASES/INFLAMMATION/INFECTION

Quantification of Thalamic Atrophy in MS: From the Multicenter Italian Neuroimaging Network Initiative Data Set to Clinical Application

Loredana Storelli, Elisabetta Pagani, Patrizia Pantano, Antonio Gallo, Nicola De Stefano, Maria A. Rocca, Massimo Filippi and for the INNI Network
American Journal of Neuroradiology November 2023, DOI: https://doi.org/10.3174/ajnr.A8050
Loredana Storelli
aFrom the Neuroimaging Research Unit (L.S., E.P., M.A.R., M.F.), Division of Neuroscience, Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Loredana Storelli
Elisabetta Pagani
aFrom the Neuroimaging Research Unit (L.S., E.P., M.A.R., M.F.), Division of Neuroscience, Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Elisabetta Pagani
Patrizia Pantano
bDepartment of Human Neurosciences (P.P.), Sapienza University of Rome, Rome, Italy
cIstituto Di Ricovero e Cura a Carattere Scientifico NEUROMED (P.P.), Pozzilli, Isernia, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patrizia Pantano
Antonio Gallo
dDepartment of Advanced Medical and Surgical Sciences and 3T MRI-Center (A.G.), University of Campania “Luigi Vanvitelli,” Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Antonio Gallo
Nicola De Stefano
eDepartment of Medicine, Surgery and Neuroscience (N.D.S), University of Siena, Siena, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nicola De Stefano
Maria A. Rocca
aFrom the Neuroimaging Research Unit (L.S., E.P., M.A.R., M.F.), Division of Neuroscience, Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
fNeurology Unit (M.A.R., M.F.), Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
gVita-Salute San Raffaele University (M.A.R., M.F.), Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Maria A. Rocca
Massimo Filippi
aFrom the Neuroimaging Research Unit (L.S., E.P., M.A.R., M.F.), Division of Neuroscience, Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
fNeurology Unit (M.A.R., M.F.), Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
gVita-Salute San Raffaele University (M.A.R., M.F.), Milan, Italy
hNeurorehabilitation Unit (M.F.), Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
iNeurophysiology Service (M.F.), Istituto Di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Massimo Filippi
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Haber SN
    . The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 2003;26:317–30 doi:10.1016/j.jchemneu.2003.10.003 pmid:14729134
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Henry RG,
    2. Shieh M,
    3. Okuda DT, et al
    . Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry 2008;79:1236–44 doi:10.1136/jnnp.2007.134825 pmid:18469033
    Abstract/FREE Full Text
  3. 3.↵
    1. Audoin B,
    2. Ranjeva JP,
    3. Au Duong MV, et al
    . Voxel-based analysis of MTR images: a method to locate gray matter abnormalities in patients at the earliest stage of multiple sclerosis. J Magn Reson Imaging 2004;20:765–71 doi:10.1002/jmri.20178 pmid:15503338
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Audoin B,
    2. Davies GR,
    3. Finisku L, et al
    . Localization of grey matter atrophy in early RRMS: a longitudinal study. J Neurol 2006;253:1495–501 doi:10.1007/s00415-006-0264-2 pmid:17093899
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Sepulcre J,
    2. Sastre-Garriga J,
    3. Cercignani M, et al
    . Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 2006;63:1175–80 doi:10.1001/archneur.63.8.1175 pmid:16908748
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Mesaros S,
    2. Rocca MA,
    3. Absinta M, et al
    . Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology 2008;70:1107–12 doi:10.1212/01.wnl.0000291010.54692.85 pmid:18272867
    CrossRefPubMed
  7. 7.↵
    1. Mesaros S,
    2. Rocca MA,
    3. Pagani E, et al
    . Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol 2011;32:1016–20 doi:10.3174/ajnr.A2430 pmid:21393412
    Abstract/FREE Full Text
  8. 8.↵
    1. Rocca MA,
    2. Mesaros S,
    3. Pagani E, et al
    . Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology 2010;257:463–69 doi:10.1148/radiol.10100326 pmid:20724544
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Azevedo CJ,
    2. Cen SY,
    3. Khadka S, et al
    . Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease. Ann Neurol 2018;83:223–34 doi:10.1002/ana.25150 pmid:29328531
    CrossRefPubMed
  10. 10.↵
    1. Filippi M,
    2. Rocca MA,
    3. Pagani E, et al
    ; ALLEGRO Study Group. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry 2014;85:851–58 doi:10.1136/jnnp-2013-306132 pmid:24029546
    Abstract/FREE Full Text
  11. 11.↵
    1. Gaetano L,
    2. Haring DA,
    3. Radue EW, et al
    . Fingolimod effect on gray matter, thalamus, and white matter in patients with multiple sclerosis. Neurology 2018;90:e1324–32 doi:10.1212/WNL.0000000000005292 pmid:29540589
    Abstract/FREE Full Text
  12. 12.↵
    1. Hanninen K,
    2. Viitala M,
    3. Paavilainen T, et al
    . Thalamic atrophy predicts 5-year disability progression in multiple sclerosis. Front Neurol 2020;11:606 doi:10.3389/fneur.2020.00606 pmid:32760339
    CrossRefPubMed
  13. 13.↵
    1. Schoonheim MM,
    2. Ciccarelli O
    . The value of including thalamic atrophy as a clinical trial endpoint in multiple sclerosis. Neurology 2018;90:677–78 doi:10.1212/WNL.0000000000005279 pmid:29540583
    Abstract/FREE Full Text
  14. 14.↵
    1. Meijerman A,
    2. Amiri H,
    3. Steenwijk MD, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. Reproducibility of deep gray matter atrophy rate measurement in a large multicenter dataset. AJNR Am J Neuroradiol 2018;39:46–53 doi:10.3174/ajnr.A5459 pmid:29191870
    Abstract/FREE Full Text
  15. 15.↵
    1. Velasco-Annis C,
    2. Akhondi-Asl A,
    3. Stamm A, et al
    . Reproducibility of brain MRI segmentation algorithms: empirical comparison of local MAP PSTAPLE, FreeSurfer, and FSL-FIRST. J Neuroimaging 2018;28:162–72 doi:10.1111/jon.12483 pmid:29134725
    CrossRefPubMed
  16. 16.↵
    1. Bisecco A,
    2. Rocca MA,
    3. Pagani E, et al
    ; MAGNIMS Network. Connectivity-based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: a multicenter study. Hum Brain Mapp 2015;36:2809–25 doi:10.1002/hbm.22809 pmid:25873194
    CrossRefPubMed
  17. 17.↵
    FSL MIST. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MIST. Accessed May 10, 2023
  18. 18.↵
    1. Visser E,
    2. Keuken MC,
    3. Forstmann BU, et al
    . Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7T data at young and old age. Neuroimage 2016;139:324–36 doi:10.1016/j.neuroimage.2016.06.039 pmid:27349329
    CrossRefPubMed
  19. 19.↵
    1. Filippi M,
    2. Tedeschi G,
    3. Pantano P, et al
    ; INNI Network. The Italian Neuroimaging Network Initiative (INNI): enabling the use of advanced MRI techniques in patients with MS. Neurol Sci 2017;38:1029–38 doi:10.1007/s10072-017-2903-z pmid:28293740
    CrossRefPubMed
  20. 20.↵
    1. Lublin FD,
    2. Reingold SC
    . Defining the clinical course of multiple sclerosis: results of an international survey: National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996;46:907–11 doi:10.1212/wnl.46.4.907 pmid:8780061
    Abstract/FREE Full Text
  21. 21.↵
    1. Storelli L,
    2. Rocca MA,
    3. Pantano P, et al
    ; INNI Network. MRI quality control for the Italian Neuroimaging Network Initiative: moving towards big data in multiple sclerosis. J Neurol 2019;266:2848–58 doi:10.1007/s00415-019-09509-4 pmid:31422457
    CrossRefPubMed
  22. 22.↵
    1. Andersson JL,
    2. Graham MS,
    3. Drobnjak I, et al
    . Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. Neuroimage 2017;152:450–66 doi:10.1016/j.neuroimage.2017.02.085 pmid:28284799
    CrossRefPubMed
  23. 23.↵
    1. Andersson JL,
    2. Sotiropoulos SN
    . An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016;125:1063–78 doi:10.1016/j.neuroimage.2015.10.019 pmid:26481672
    CrossRefPubMed
  24. 24.↵
    1. Behrens TE,
    2. Woolrich MW,
    3. Jenkinson M, et al
    . Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003;50:1077–88 doi:10.1002/mrm.10609 pmid:14587019
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Patenaude B,
    2. Smith SM,
    3. Kennedy DN, et al
    . A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011;56:907–22 doi:10.1016/j.neuroimage.2011.02.046 pmid:21352927
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Visser E,
    2. Keuken MC,
    3. Douaud G, et al
    . Automatic segmentation of the striatum and globus pallidus using MIST: multimodal image segmentation tool. Neuroimage 2016;125:479–97 doi:10.1016/j.neuroimage.2015.10.013 pmid:26477650
    CrossRefPubMed
  27. 27.↵
    1. Fischl B,
    2. Salat DH,
    3. Busa E, et al
    . Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341–55 doi:10.1016/s0896-6273(02)00569-x pmid:11832223
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Fischl B,
    2. Salat DH,
    3. van der Kouwe AJ, et al
    . Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004;23(Suppl 1):S69–84 doi:10.1016/j.neuroimage.2004.07.016 pmid:15501102
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Battaglini M,
    2. Jenkinson M,
    3. De Stefano N
    . Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 2012;33:2062–71 doi:10.1002/hbm.21344 pmid:21882300
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Cootes TF,
    2. Taylor CJ,
    3. Cooper DH, et al
    . Active shape models: their training and application. Comput Vis Image Underst 1995;61:38–59 doi:10.1006/cviu.1995.1004
    CrossRefWeb of Science
  31. 31.↵
    1. Jacob C
    . Statistical Power Analysis for the Behavioral Sciences. Routledge; 1988:579
  32. 32.↵
    1. Rio J,
    2. Nos C,
    3. Tintore M, et al
    . Defining the response to interferon-beta in relapsing-remitting multiple sclerosis patients. Ann Neurol 2006;59:344–52 doi:10.1002/ana.20740 pmid:16437558
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Choi EY,
    2. Tian L,
    3. Su JH, et al
    . Thalamic nuclei atrophy at high and heterogenous rates during cognitively unimpaired human aging. Neuroimage 2022;262:119584 doi:10.1016/j.neuroimage.2022.119584 pmid:36007822
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantification of Thalamic Atrophy in MS: From the Multicenter Italian Neuroimaging Network Initiative Data Set to Clinical Application
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Loredana Storelli, Elisabetta Pagani, Patrizia Pantano, Antonio Gallo, Nicola De Stefano, Maria A. Rocca, Massimo Filippi, for the INNI Network
Quantification of Thalamic Atrophy in MS: From the Multicenter Italian Neuroimaging Network Initiative Data Set to Clinical Application
American Journal of Neuroradiology Nov 2023, DOI: 10.3174/ajnr.A8050

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Quantification of Thalamic Atrophy in MS: From the Multicenter Italian Neuroimaging Network Initiative Data Set to Clinical Application
Loredana Storelli, Elisabetta Pagani, Patrizia Pantano, Antonio Gallo, Nicola De Stefano, Maria A. Rocca, Massimo Filippi, for the INNI Network
American Journal of Neuroradiology Nov 2023, DOI: 10.3174/ajnr.A8050
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Automated Lesion Segmentation Software in MS
  • DL Image Reconstruction in T2-Weighted TSE at 7T
  • 7T MRI vasculitis imaging
Show more Ultra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire