Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging
Open Access

Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury

L. Wang, W.M. Zheng, T.F. Liang, Y.H. Yang, B.N. Yang, X. Chen, Q. Chen, X.J. Li, J. Lu, B.W. Li and N. Chen
American Journal of Neuroradiology April 2023, DOI: https://doi.org/10.3174/ajnr.A7847
L. Wang
aFrom the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Wang
W.M. Zheng
aFrom the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W.M. Zheng
T.F. Liang
cDepartment of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.F. Liang
Y.H. Yang
aFrom the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y.H. Yang
B.N. Yang
aFrom the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.N. Yang
X. Chen
aFrom the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Chen
Q. Chen
dDepartment of Radiology (Q.C.), Beijing Friendship Hospital, Capital Medical University, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Q. Chen
X.J. Li
eDepartment of Radiology (X.J.L.), China Rehabilitation Research Center, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X.J. Li
J. Lu
aFrom the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Lu
B.W. Li
cDepartment of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.W. Li
N. Chen
aFrom the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
bBeijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Chen
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Benedetti B,
    2. Weidenhammer A,
    3. Reisinger M, et al
    . Spinal cord injury and loss of cortical inhibition. Int J Mol Sci 2022;23:5622 doi:10.3390/ijms23105622 pmid:35628434
    CrossRefPubMed
  2. 2.↵
    1. Mcintyre A,
    2. Sadowsky C,
    3. Behrman A, et al
    ; the SCIRE Project Research Group. A systematic review of the scientific literature for rehabilitation/habilitation among individuals with pediatric-onset spinal cord injury. Top Spinal Cord Inj Rehabil 2022;28:13–90 doi:10.46292/sci21-00046 pmid:35145331
    CrossRefPubMed
  3. 3.↵
    1. Knikou M
    . Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol 2010;121:1655–68 doi:10.1016/j.clinph.2010.01.039 pmid:20427232
    CrossRefPubMed
  4. 4.↵
    1. Park E,
    2. Cha H,
    3. Kim E, et al
    . Alterations in power spectral density in motor- and pain-related networks on neuropathic pain after spinal cord injury. Neuroimage Clin 2020;28:102342 doi:10.1016/j.nicl.2020.102342 pmid:32798908
    CrossRefPubMed
  5. 5.↵
    1. Adams I,
    2. Smits-Engelsman B,
    3. Lust JM, et al
    . Feasibility of motor imagery training for children with developmental coordination disorder: a pilot study. Front Psychol 2017;8:1271 doi:10.3389/fpsyg.2017.01271 pmid:28798707
    CrossRefPubMed
  6. 6.↵
    1. Wang H,
    2. Xiong X,
    3. Zhang K, et al
    . Motor network reorganization after motor imagery training in stroke patients with moderate to severe upper limb impairment. CNS Neurosci Ther 2023;29:619–32 doi:10.1111/cns.14065 pmid:36575865
    CrossRefPubMed
  7. 7.↵
    1. Guerra ZF,
    2. Lucchetti ALG,
    3. Lucchetti G
    . Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials. J Neurol Phys Ther 2017;41:205–14 doi:10.1097/NPT.0000000000000200 pmid:28922311
    CrossRefPubMed
  8. 8.↵
    1. Li F,
    2. Zhang T,
    3. Li BJ, et al
    . Motor imagery training induces changes in brain neural networks in stroke patients. Neural Regen Res 2018;13:1771–81 doi:10.4103/1673-5374.238616 pmid:30136692
    CrossRefPubMed
  9. 9.↵
    1. Tinaz S,
    2. Kamel S,
    3. Aravala SS, et al
    . Neurofeedback-guided kinesthetic motor imagery training in Parkinson’s disease: randomized trial. Neuroimage Clin 2022;34:102980 doi:10.1016/j.nicl.2022.102980 pmid:35247729
    CrossRefPubMed
  10. 10.↵
    1. Hetu S,
    2. Gregoire M,
    3. Saimpont A, et al
    . The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 2013;37:930–49 doi:10.1016/j.neubiorev.2013.03.017 pmid:23583615
    CrossRefPubMed
  11. 11.↵
    1. Chen X,
    2. Wan L,
    3. Qin W, et al
    . Functional preservation and reorganization of brain during motor imagery in patients with incomplete spinal cord injury: a pilot fMRI study. Front Hum Neurosci 2016;10:46 doi:10.3389/fnhum.2016.00046 pmid:26913000
    CrossRefPubMed
  12. 12.↵
    1. Hardwick RM,
    2. Caspers S,
    3. Eickhoff SB, et al
    . Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 2018;94:31–44 doi:10.1016/j.neubiorev.2018.08.003 pmid:30098990
    CrossRefPubMed
  13. 13.↵
    1. Cederstrom N,
    2. Graner S,
    3. Nilsson G, et al
    . Effect of motor imagery on enjoyment in knee-injury prevention and rehabilitation training: a randomized crossover study. J Sci Med Sport 2021;24:258–63 doi:10.1016/j.jsams.2020.09.004 pmid:32958377
    CrossRefPubMed
  14. 14.↵
    1. Regev M,
    2. Halpern AR,
    3. Owen AM, et al
    . Mapping specific mental content during musical imagery. Cereb Cortex 2021;31:3622–40 doi:10.1093/cercor/bhab036 pmid:33749742
    CrossRefPubMed
  15. 15.↵
    1. Kahraman T,
    2. Savci S,
    3. Ozdogar AT, et al
    . Physical, cognitive and psychosocial effects of telerehabilitation-based motor imagery training in people with multiple sclerosis: a randomized controlled pilot trial. J Telemed Telecare 2020;26:251–60 doi:10.1177/1357633X18822355 pmid:30744491
    CrossRefPubMed
  16. 16.↵
    1. Sharp KG,
    2. Gramer R,
    3. Butler L, et al
    . Effect of overground training augmented by mental practice on gait velocity in chronic, incomplete spinal cord injury. Arch Phys Med Rehabil 2014;95:615–21 doi:10.1016/j.apmr.2013.11.016 pmid:24342552
    CrossRefPubMed
  17. 17.↵
    1. Pindus DM,
    2. Drollette ES,
    3. Raine LB, et al
    . Moving fast, thinking fast: the relations of physical activity levels and bouts to neuroelectric indices of inhibitory control in preadolescents. J Sport Health Sci 2019;8:301–14 doi:10.1016/j.jshs.2019.02.003 pmid:31333883
    CrossRefPubMed
  18. 18.↵
    1. Xie J,
    2. Jiang L,
    3. Li Y, et al
    . Rehabilitation of motor function in children with cerebral palsy based on motor imagery. Cogn Neurodyn 2021;15:939–48 doi:10.1007/s11571-021-09672-3 pmid:34790263
    CrossRefPubMed
  19. 19.↵
    1. Funk M,
    2. Brugger P,
    3. Wilkening F
    . Motor processes in children’s imagery: the case of mental rotation of hands. Dev Sci 2005;8:402–08 doi:10.1111/j.1467-7687.2005.00428.x pmid:16048512
    CrossRefPubMed
  20. 20.↵
    1. Spruijt S,
    2. Jongsma ML,
    3. van der Kamp J, et al
    . Predictive models to determine imagery strategies employed by children to judge hand laterality. PLoS One 2015;10:e126568 doi:10.1371/journal.pone.0126568 pmid:25965271
    CrossRefPubMed
  21. 21.↵
    1. Souto DO,
    2. Cruz T,
    3. Coutinho K, et al
    . Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy. NRE 2020;46:53–63 doi:10.3233/NRE-192931 pmid:32039870
    CrossRefPubMed
  22. 22.↵
    1. Marshall B,
    2. Wright DJ,
    3. Holmes PS, et al
    . Combined action observation and motor imagery facilitates visuomotor adaptation in children with developmental coordination disorder. Res Dev Disabil 2020;98:103570 doi:10.1016/j.ridd.2019.103570 pmid:31918039
    CrossRefPubMed
  23. 23.↵
    1. Scott MW,
    2. Wood G,
    3. Holmes PS, et al
    . Combined action observation and motor imagery: an intervention to combat the neural and behavioural deficits associated with developmental coordination disorder. Neurosci Biobehav Rev 2021;127:638–46 doi:10.1016/j.neubiorev.2021.05.015 pmid:34022280
    CrossRefPubMed
  24. 24.↵
    1. Malouin F,
    2. Richards CL,
    3. Jackson PL, et al
    . The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J Neurol Phys Ther 2007;31:20–29 doi:10.1097/01.NPT.0000260567.24122.64 pmid:17419886
    CrossRefPubMed
  25. 25.↵
    1. Butler AJ,
    2. Cazeaux J,
    3. Fidler A, et al
    . The Movement Imagery Questionnaire-Revised, Second Edition (MIQ-RS) is a reliable and valid tool for evaluating motor imagery in stroke populations. Evid Based Complement Alternat Med 2012;2012:1–11 doi:10.1155/2012/497289 pmid:22474504
    CrossRefPubMed
  26. 26.↵
    1. Fan L,
    2. Li H,
    3. Zhuo J, et al
    . The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cereb Cortex 2016;26:3508–26 doi:10.1093/cercor/bhw157 pmid:27230218
    CrossRefPubMed
  27. 27.↵
    1. Behrendt F,
    2. Zumbrunnen V,
    3. Brem L, et al
    . Effect of motor imagery training on motor learning in children and adolescents: a systematic review and meta-analysis. Int J Environ Res Public Health 2021;18:9467 doi:10.3390/ijerph18189467 pmid:34574389
    CrossRefPubMed
  28. 28.↵
    1. Wang X,
    2. Wang H,
    3. Xiong X, et al
    . Motor imagery training after stroke increases slow-5 oscillations and functional connectivity in the ipsilesional inferior parietal lobule. Neurorehabil Neural Repair 2020;34:321–32 doi:10.1177/1545968319899919 pmid:32102610
    CrossRefPubMed
  29. 29.↵
    1. Glover S,
    2. Bibby E,
    3. Tuomi E
    . Executive functions in motor imagery: support for the motor-cognitive model over the functional equivalence model. Exp Brain Res 2020;238:931–44 doi:10.1007/s00221-020-05756-4 pmid:32179942
    CrossRefPubMed
  30. 30.↵
    1. Ward NS,
    2. Brown MM,
    3. Thompson AJ, et al
    . Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003;126:2476–96 doi:10.1093/brain/awg245 pmid:12937084
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Romanelli P,
    2. Esposito V,
    3. Schaal DW, et al
    . Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev 2005;48:112–28 doi:10.1016/j.brainresrev.2004.09.008 pmid:15708631
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Gittis AH,
    2. Kreitzer AC
    . Striatal microcircuitry and movement disorders. Trends Neurosci 2012;35:557–64 doi:10.1016/j.tins.2012.06.008 pmid:22858522
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Patra A,
    2. Kaur H,
    3. Chaudhary P, et al
    . Morphology and morphometry of human paracentral lobule: an anatomical study with its application in neurosurgery. Asian J Neurosurg 2021;16:349–54 doi:10.4103/ajns.AJNS_505_20 pmid:34268163
    CrossRefPubMed
  34. 34.↵
    1. Si L,
    2. Cui B,
    3. Li Z, et al
    . Altered resting-state intranetwork and internetwork functional connectivity in patients with chronic unilateral vestibulopathy. J Magn Reson Imaging 2022;56:291–300 doi:10.1002/jmri.28031 pmid:34921750
    CrossRefPubMed
  35. 35.↵
    1. Zhu Y,
    2. Song X,
    3. Xu M, et al
    . Impaired interhemispheric synchrony in Parkinson’s disease with depression. Sci Rep 2016;6:27477 doi:10.1038/srep27477 pmid:27265427
    CrossRefPubMed
  36. 36.↵
    1. Kunimatsu J,
    2. Maeda K,
    3. Hikosaka O
    . The caudal part of putamen represents the historical object value information. J Neurosci 2019;39:1709–19 doi:10.1523/JNEUROSCI.2534-18.2018 pmid:30573645
    Abstract/FREE Full Text
  37. 37.↵
    1. Turner RS,
    2. Desmurget M,
    3. Grethe J, et al
    . Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol 2003;90:3958–66 doi:10.1152/jn.00323.2003 pmid:12954606
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Stoodley CJ,
    2. Schmahmann JD
    . Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010;46:831–44 doi:10.1016/j.cortex.2009.11.008 pmid:20152963
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Lorey B,
    2. Pilgramm S,
    3. Walter B, et al
    . Your mind’s hand: motor imagery of pointing movements with different accuracy. Neuroimage 2010;49:3239–47 doi:10.1016/j.neuroimage.2009.11.038 pmid:19948224
    CrossRefPubMed
  40. 40.↵
    1. Brooks JX,
    2. Carriot J,
    3. Cullen KE
    . Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 2015;18:1310–17 doi:10.1038/nn.4077 pmid:26237366
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L. Wang, W.M. Zheng, T.F. Liang, Y.H. Yang, B.N. Yang, X. Chen, Q. Chen, X.J. Li, J. Lu, B.W. Li, N. Chen
Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury
American Journal of Neuroradiology Apr 2023, DOI: 10.3174/ajnr.A7847

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury
L. Wang, W.M. Zheng, T.F. Liang, Y.H. Yang, B.N. Yang, X. Chen, Q. Chen, X.J. Li, J. Lu, B.W. Li, N. Chen
American Journal of Neuroradiology Apr 2023, DOI: 10.3174/ajnr.A7847
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • EEG-Informed fMRI Analysis Reveals Neurovascular Coupling in Motor Execution and Imagery
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Frontal Paraventricular Cysts
  • Sodium MRI in Pediatric Brain Tumors
  • FRACTURE MR in Congenital Vertebral Anomalies
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire