Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging

Synthetic MR Imaging–Based WM Signal Suppression Identifies Neonatal Brainstem Pathways in Vivo

V.U. Schmidbauer, M.S. Yildirim, G.O. Dovjak, M. Weber, M.C. Diogo, R.-I. Milos, V. Giordano, F. Prayer, M. Stuempflen, K. Goeral, J. Buchmayer, K. Klebermass-Schrehof, A. Berger, D. Prayer and G. Kasprian
American Journal of Neuroradiology November 2022, DOI: https://doi.org/10.3174/ajnr.A7710
V.U. Schmidbauer
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V.U. Schmidbauer
M.S. Yildirim
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.S. Yildirim
G.O. Dovjak
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.O. Dovjak
M. Weber
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Weber
M.C. Diogo
cDepartment of Neuroradiology (M.C.D.), Hospital Garcia de Orta, Almada, Portugal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.C. Diogo
R.-I. Milos
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.-I. Milos
V. Giordano
bComprehensive Center for Pediatrics (V.G., K.G., J.B., K.K.-S., A.B.), Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Giordano
F. Prayer
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Prayer
M. Stuempflen
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Stuempflen
K. Goeral
bComprehensive Center for Pediatrics (V.G., K.G., J.B., K.K.-S., A.B.), Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Goeral
J. Buchmayer
bComprehensive Center for Pediatrics (V.G., K.G., J.B., K.K.-S., A.B.), Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Buchmayer
K. Klebermass-Schrehof
bComprehensive Center for Pediatrics (V.G., K.G., J.B., K.K.-S., A.B.), Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Klebermass-Schrehof
A. Berger
bComprehensive Center for Pediatrics (V.G., K.G., J.B., K.K.-S., A.B.), Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Berger
D. Prayer
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Prayer
G. Kasprian
aFrom the Department of Biomedical Imaging and Image-Guided Therapy (V.U.S., M.S.Y., G.O.D., M.W., R.-I.M., F.P., M.S., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Kasprian
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. van der Knaap MS,
    2. Valk J
    . Magnetic Resonance of Myelination and Myelin Disorders. 3rd ed. Springer-Verlag; 2005
  2. 2.↵
    1. Minkowski A
    1. Yakovlev P,
    2. Lecours A
    . The myelogenetic cycles of regional maturation of the brain. In: Minkowski A, ed. Regional Development of the Brain in Early Life. Blackwell Scientific; 1967:3–70
  3. 3.↵
    1. Taylor GL,
    2. O’Shea TM
    . Extreme prematurity: risk and resiliency. Curr Probl Pediatr Adolesc Health Care 2022;52:101132 doi:10.1016/j.cppeds.2022.101132 pmid:35181232
    CrossRefPubMed
  4. 4.↵
    1. Ibrahim J,
    2. Mir I,
    3. Chalak L
    . Brain imaging in preterm infants <32 weeks gestation: a clinical review and algorithm for the use of cranial ultrasound and qualitative brain MRI. Pediatr Res 2018;84:799–806 doi:10.1038/s41390-018-0194-6 pmid:30315272
    CrossRefPubMed
  5. 5.↵
    1. Parikh NA
    . Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Semin Perinatol 2016;40:530–41 doi:10.1053/j.semperi.2016.09.005 pmid:27863706
    CrossRefPubMed
  6. 6.↵
    1. Glass HC,
    2. Costarino AT,
    3. Stayer SA, et al
    . Outcomes for extremely premature infants. Anesth Analg 2015;120:1337–51 doi:10.1213/ANE.0000000000000705 pmid:25988638
    CrossRefPubMed
  7. 7.↵
    1. Marlow N,
    2. Wolke D,
    3. Bracewell MA, et al
    ; EPICure Study Group. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 2005;352:9–19 doi:10.1056/NEJMoa041367 pmid:15635108
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Schmidbauer V,
    2. Geisl G,
    3. Diogo M, et al
    . SyMRI detects delayed myelination in preterm neonates. Eur Radiol 2019;29:7063–72 doi:10.1007/s00330-019-06325-2 pmid:31286188
    CrossRefPubMed
  9. 9.↵
    1. van der Knaap MS,
    2. Valk J
    . MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 1990;31:459–70 doi:10.1007/BF00340123 pmid:2352626
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Barkovich AJ,
    2. Kjos BO,
    3. Jackson DE, et al
    . Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 1988;166:173–80 doi:10.1148/radiology.166.1.3336675 pmid:3336675
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Schmidbauer V,
    2. Geisl G,
    3. Cardoso Diogo M, et al
    . Validity of SyMRI for assessment of the neonatal brain. Clin Neuroradiol 2021;31:315–23 doi:10.1007/s00062-020-00894-2 pmid:32161995
    CrossRefPubMed
  12. 12.↵
    1. McAllister A,
    2. Leach J,
    3. West H, et al
    . Quantitative synthetic MRI in children: normative intracranial tissue segmentation values during development. AJNR Am J Neuroradiol 2017;38:2364–72 doi:10.3174/ajnr.A5398 pmid:28982788
    Abstract/FREE Full Text
  13. 13.↵
    1. Tanenbaum LN,
    2. Tsiouris AJ,
    3. Johnson AN, et al
    . Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2017;38:1103–10 doi:10.3174/ajnr.A5227 pmid:28450439
    Abstract/FREE Full Text
  14. 14.↵
    1. Warntjes JB,
    2. Leinhard OD,
    3. West J, et al
    . Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 2008;60:320–29 doi:10.1002/mrm.21635 pmid:18666127
    CrossRefPubMed
  15. 15.↵
    1. Schmidbauer V,
    2. Dovjak G,
    3. Geisl G, et al
    . Impact of prematurity on the tissue properties of the neonatal brainstem: a quantitative MR approach. AJNR Am J Neuroradiol 2021;42:581–89 doi:10.3174/ajnr.A6945 pmid:33478940
    Abstract/FREE Full Text
  16. 16.↵
    1. Schmidbauer VU,
    2. Yildirim MS,
    3. Dovjak GO, et al
    . Different from the beginning: WM maturity of female and male extremely preterm neonates: a quantitative MRI study. AJNR Am J Neuroradiol 2022;43:611–19 doi:10.3174/ajnr.A7472 pmid:35332014
    Abstract/FREE Full Text
  17. 17.↵
    1. Shepherd TM,
    2. Ades-Aron B,
    3. Bruno M, et al
    . Direct in vivo MRI discrimination of brainstem nuclei and pathways. AJNR Am J Neuroradiol 2020;41:777–84 doi:10.3174/ajnr.A6542 pmid:32354712
    Abstract/FREE Full Text
  18. 18.↵
    1. Grewal SS,
    2. Middlebrooks EH,
    3. Kaufmann TJ, et al
    . Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Neurosurg Focus 2018;45:E6 doi:10.3171/2018.4.FOCUS18147 pmid:30064328
    CrossRefPubMed
  19. 19.↵
    1. Bot M,
    2. Pauwels R,
    3. van den Munckhof P, et al
    . The fast gray matter acquisition T1 inversion recovery sequence in deep brain stimulation: introducing the rubral wing for dentato-rubro-thalamic tract depiction and tremor control. Neuromodulation 2022 Jan 15. [Epub ahead of print] doi:10.1016/j.neurom.2021.11.015 pmid:35088745
    CrossRefPubMed
  20. 20.↵
    1. Hagiwara A,
    2. Warntjes M,
    3. Hori M, et al
    . SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest Radiology 2017;52:647–57 doi:10.1097/RLI.0000000000000365 pmid:28257339
    CrossRefPubMed
  21. 21.↵
    1. Kang KM,
    2. Choi SH,
    3. Kim H, et al
    . The effect of varying slice thickness and interslice gap on T1 and T2 measured with the multidynamic multiecho sequence. Magn Reson Med Sci 2019;18:126–33 doi:10.2463/mrms.mp.2018-0010 pmid:29984783
    CrossRefPubMed
  22. 22.↵
    1. Sudhyadhom A,
    2. Haq IU,
    3. Foote KD, et al
    . A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the fast gray matter acquisition T1 inversion recovery (FGATIR). Neuroimage 2009;47:T44–52 doi:10.1016/j.neuroimage.2009.04.018 pmid:19362595
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Koo TK,
    2. Li MY
    . A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016;15:155–63 doi:10.1016/j.jcm.2016.02.012 pmid:27330520
    CrossRefPubMed
  24. 24.↵
    1. Provenzi L,
    2. Scotto di Minico G,
    3. Giorda R, et al
    . Telomere length in preterm infants: a promising biomarker of early adversity and care in the neonatal intensive care unit? Front Endocrinol (Lausanne) 2017;8:295 doi:10.3389/fendo.2017.00295
    CrossRef
  25. 25.↵
    1. Dieterich M,
    2. Brandt T
    . The bilateral central vestibular system: its pathways, functions, and disorders. Ann N Y Acad Sci 2015;1343:10–26 doi:10.1111/nyas.12585 pmid:25581203
    CrossRefPubMed
  26. 26.↵
    1. Eshaghi Z,
    2. Jafari Z,
    3. Jalaie S
    . Static balance function in children with a history of preterm birth. Med J Islam Repub Iran 2015;29:310 pmid:26913273
    PubMed
  27. 27.↵
    1. Kuczynski AM,
    2. Carlson HL,
    3. Lebel C, et al
    . Sensory tractography and robot-quantified proprioception in hemiparetic children with perinatal stroke: sensory tractography in perinatal stroke. Hum Brain Mapp 2017;38:2424–40 doi:10.1002/hbm.23530 pmid:28176425
    CrossRefPubMed
  28. 28.↵
    1. Günal A,
    2. Pekçetin S,
    3. Öksüz Ç
    . Sensory processing patterns of young adults with preterm birth history. Somatosens Mot Res 2020;37:288–92 doi:10.1080/08990220.2020.1824904 pmid:32972245
    CrossRefPubMed
  29. 29.↵
    1. Kwong AK,
    2. Doyle LW,
    3. Olsen JE, et al
    . Early motor repertoire and neurodevelopment at 2 years in infants born extremely preterm or extremely‐low‐birthweight. Dev Med Child Neurol 2022;64;855–62 doi:10.1111/dmcn.15167 pmid:35103304
    CrossRefPubMed
  30. 30.↵
    1. Jost K,
    2. Pramana I,
    3. Delgado-Eckert E, et al
    . Dynamics and complexity of body temperature in preterm infants nursed in incubators. PLoS One 2017;12:e0176670 doi:10.1371/journal.pone.0176670 pmid:28448569
    CrossRefPubMed
  31. 31.↵
    1. Knobel RB,
    2. Levy J,
    3. Katz L, et al
    . A pilot study to examine maturation of body temperature control in preterm infants. J Obstet Gynecol Neonatal Nurs 2013;42:562–74 doi:10.1111/1552-6909.12240 pmid:24004312
    CrossRefPubMed
  32. 32.↵
    1. Sarnat HB,
    2. Flores-Sarnat L,
    3. Auer RN
    . Sequence of synaptogenesis in the fetal and neonatal cerebellar system, Part 1: Guillain-Mollaret triangle (dentato-rubro-olivo-cerebellar circuit). Dev Neurosci 2013;35:69–81 doi:10.1159/000350503 pmid:23689557
    CrossRefPubMed
  33. 33.↵
    1. Kinney HC,
    2. Brody BA,
    3. Finkelstein DM, et al
    . Delayed central nervous system myelination in the sudden infant death syndrome. J Neuropathol Exp Neurol 1991;50:29–48 doi:10.1097/00005072-199101000-00003 pmid:1985152
    CrossRefPubMed
  34. 34.↵
    1. Kramarz S
    . Preterm birth rate in Germany: no numbers exist for this. Dtsch Arztebl Int 2020;117:509 doi:10.3238/arztebl.2020.0509a pmid:33087232
    CrossRefPubMed
  35. 35.↵
    1. Goeral K,
    2. Kasprian G,
    3. Hüning BM, et al
    . A novel magnetic resonance imaging‐based scoring system to predict outcome in neonates born preterm with intraventricular haemorrhage. Dev Med Child Neurol 2022;64:608–77 doi:10.1111/dmcn.15116 pmid:34839534
    CrossRefPubMed
  36. 36.↵
    1. Dubois J,
    2. Alison M,
    3. Counsell SJ, et al
    . MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances. J Magn Reson Imaging 2021;53:1318–43 doi:10.1002/jmri.27192 pmid:32420684
    CrossRefPubMed
  37. 37.
    1. Engle WA
    , American Academy of Pediatrics Committee on Fetus and Newborn. Age terminology during the perinatal period. Pediatrics 2004;114:1362–64 doi:10.1542/peds.2004-1915 pmid:15520122
    Abstract/FREE Full Text
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Synthetic MR Imaging–Based WM Signal Suppression Identifies Neonatal Brainstem Pathways in Vivo
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
V.U. Schmidbauer, M.S. Yildirim, G.O. Dovjak, M. Weber, M.C. Diogo, R.-I. Milos, V. Giordano, F. Prayer, M. Stuempflen, K. Goeral, J. Buchmayer, K. Klebermass-Schrehof, A. Berger, D. Prayer, G. Kasprian
Synthetic MR Imaging–Based WM Signal Suppression Identifies Neonatal Brainstem Pathways in Vivo
American Journal of Neuroradiology Nov 2022, DOI: 10.3174/ajnr.A7710

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Synthetic MR Imaging–Based WM Signal Suppression Identifies Neonatal Brainstem Pathways in Vivo
V.U. Schmidbauer, M.S. Yildirim, G.O. Dovjak, M. Weber, M.C. Diogo, R.-I. Milos, V. Giordano, F. Prayer, M. Stuempflen, K. Goeral, J. Buchmayer, K. Klebermass-Schrehof, A. Berger, D. Prayer, G. Kasprian
American Journal of Neuroradiology Nov 2022, DOI: 10.3174/ajnr.A7710
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Frontal Paraventricular Cysts
  • Sodium MRI in Pediatric Brain Tumors
  • FRACTURE MR in Congenital Vertebral Anomalies
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire