Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

Complete Evaluation of Dementia: PET and MRI Correlation and Diagnosis for the Neuroradiologist

J.D. Oldan, V.L. Jewells, B. Pieper and T.Z. Wong
American Journal of Neuroradiology April 2021, DOI: https://doi.org/10.3174/ajnr.A7079
J.D. Oldan
aFrom the Department of Radiology (J.D.O., V.L.J), University of North Carolina, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.D. Oldan
V.L. Jewells
aFrom the Department of Radiology (J.D.O., V.L.J), University of North Carolina, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V.L. Jewells
B. Pieper
bDepartment of Radiology (B.P.), Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Pieper
T.Z. Wong
cDepartment of Radiology (T.Z.W.), Duke University Hospital, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.Z. Wong
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Beach TG,
    2. Monsell SE,
    3. Phillips LE, et al
    . Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J Neuropathol Exp Neurol 2012;71:266–73 doi:10.1097/NEN.0b013e31824b211b pmid:22437338
    CrossRefPubMed
  2. 2.↵
    1. Sala Frigerio C,
    2. De Strooper B
    . Alzheimer’s disease mechanisms and emerging roads to novel therapeutics. Annu Rev Neurosci 2016;39:57–79 doi:10.1146/annurev-neuro-070815-014015 pmid:27050320
    CrossRefPubMed
  3. 3.↵
    1. Femminella GD,
    2. Thayanandan T,
    3. Calsolaro V, et al
    . Imaging and molecular mechanisms of Alzheimer’s disease: a review. Int J Mol Sci 2018;19:3702 doi:10.3390/ijms19123702 pmid:30469491
    CrossRefPubMed
  4. 4.↵
    1. Reiman EM,
    2. Jagust WJ
    . Brain imaging in the study of Alzheimer’s disease. Neuroimage 2012;61:505–16 doi:10.1016/j.neuroimage.2011.11.075 pmid:22173295
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Arnold M,
    2. Nho K,
    3. Kueider-Paisley A, et al
    . Sex and APOE4 genotype modify the Alzheimer’s disease serum metabolome. Nat Commun 2020;11:1148 doi:10.1038/s41467-020-14959-w pmid:32123170
    CrossRefPubMed
  6. 6.↵
    1. Rasmussen MK,
    2. Mestre H,
    3. Nedergaard M
    . The glymphatic pathway in neurological disorders. Lancet Neurol 2018;17:1016–24 doi:10.1016/S1474-4422(18)30318-1 pmid:30353860
    CrossRefPubMed
  7. 7.↵
    1. Hay J,
    2. Johnson VE,
    3. Smith DH, et al
    . Chronic traumatic encephalopathy: the neuropathological legacy of traumatic brain injury. Annu Rev Pathol 2016;11:21–45 doi:10.1146/annurev-pathol-012615-044116 pmid:26772317
    CrossRefPubMed
  8. 8.↵
    1. Tiepolt S,
    2. Patt M,
    3. Aghakhanyan G, et al
    . Current radiotracers to image neurodegenerative disease. EJNMMI Radiopharm Chem 2019;4:17 doi:10.1186/s41181-019-0070-7 pmid:31659510
    CrossRefPubMed
  9. 9.↵
    1. Yates PA,
    2. Desmond PM,
    3. Phal PM, et al
    . AIBL Research Group. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 2014;82:1266–73 doi:10.1212/WNL.0000000000000285 pmid:31659510
    CrossRefPubMed
  10. 10.↵
    1. Barthélemy NR,
    2. Li Y,
    3. Joseph-Mathurin N, et al
    . Dominantly Inherited Alzheimer Network. A soluable phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat Med 2020;26:398–407 doi:10.1038/s41591-020-0781-z pmid:32161412
    CrossRefPubMed
  11. 11.↵
    1. Khosravi M,
    2. Newberg A,
    3. Alavi A
    . Cognitive impairment and dementias. Semin Nucl Med 2018;48:498–512 doi:10.1053/j.semnuclmed.2018.07.005 pmid:30322476
    CrossRefPubMed
  12. 12.↵
    1. Ibanez V,
    2. Pietrini P,
    3. Alexander GE, et al
    . Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 1998;50:1585–93 doi:10.1212/wnl.50.6.1585 pmid:9633698
    Abstract/FREE Full Text
  13. 13.↵
    1. Ma HR,
    2. Sheng LQ,
    3. Pan PL, et al
    . Cerebral glucose metabolic prediction from amnestic mild cognitive impairment to Alzheimer’s dementia: a meta-analysis. Transl Neurodegener 2018;7:9 doi:10.1186/s40035-018-0114-z pmid:29713467
    CrossRefPubMed
  14. 14.↵
    1. Smailagic N,
    2. Lafortune L,
    3. Kelly S, et al
    . 18F-FDG PET for prediction of conversion to Alzheimer’s disease dementia in people with mild cognitive impairment: an updated systematic review of test accuracy. J Alzheimers Dis 2018;64:1175–94 doi:10.3233/JAD-171125 pmid:30010119
    CrossRefPubMed
  15. 15.↵
    1. Martinez G,
    2. Vernooij RW,
    3. Fuentes PP, et al
    . 18F-PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2017;11:CD012216 doi:10.1002/14651858.CD012216.pub2 pmid:29164603
    CrossRefPubMed
  16. 16.↵
    1. Morris E,
    2. Chalkidou A,
    3. Hammers A, et al
    . Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2016;43:374–85 doi:10.1007/s00259-015-3228-x pmid:26613792
    CrossRefPubMed
  17. 17.↵
    1. Johnson KA,
    2. Sperling RA,
    3. Gidicsin CM, et al
    . AV45-A11 study group. Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement 2013;9:S72–83 doi:10.1016/j.jalz.2012.10.007 pmid:23375563
    CrossRefPubMed
  18. 18.↵
    1. Aizenstein HJ,
    2. Nebes RD,
    3. Saxton JA, et al
    . Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008;65:1509–17 doi:10.1001/archneur.65.11.1509 pmid:19001171
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Zukotynski K,
    2. Kuo PH,
    3. Mikulis D, et al
    . PET/CT of dementia. AJR Am J Roentgenol 2018;211:246–59 doi:10.2214/AJR.18.19822 pmid:29949415
    CrossRefPubMed
  20. 20.↵
    1. Ryan NS,
    2. Keihaninejad S,
    3. Shakespeare TJ, et al
    . Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease. Brain 2013;136:1399–414 doi:10.1093/brain/awt065 pmid:23539189
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Laforce R Jr.,
    2. Soucy JP,
    3. Sellami L, et al
    . Molecular imaging in dementia: past, present, and future. Alzheimers Dement 2018;14:1522–52 doi:10.1016/j.jalz.2018.06.2855 pmid:30028955
    CrossRefPubMed
  22. 22.↵
    1. Villemagne VL,
    2. Okamura N
    . In vivo tau imaging: obstacles and progress. Alzheimers Dement 2014;10:S254–64 doi:10.1016/j.jalz.2014.04.013 pmid:24924676
    CrossRefPubMed
  23. 23.↵
    1. Hyman BT,
    2. Phelps CH,
    3. Beach TG, et al
    . National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012;8:1–13 doi:10.1016/j.jalz.2011.10.007 pmid:22265587
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Tanpitukpongse TP,
    2. Mazurowski MA,
    3. Ikhena J, et al
    . Predictive utility of marketed volumentric software tools in subjects at risk for Alzheimer disease: do regions outside the hippocampus matter? AJNR Am J Neuroradiol 2017;38:546–52 doi:10.3174/ajnr.A5061 pmid:28057634
    Abstract/FREE Full Text
  25. 25.↵
    1. Yueniwati Y,
    2. Wangsadjaja C,
    3. Yulidani IG, et al
    . The role of brain MRI as an early detector of cognitive impairment. J Neurosci Rural Pract 2018;9:350–53 doi:10.4103/jnrp.jnrp_542_17 pmid:30069090
    CrossRefPubMed
  26. 26.
    1. No HJ,
    2. Yi HA,
    3. Won KS, et al
    . Association between white matter lesions and cerebral glucose metabolism in patient with cognitive impairment. Rev Esp Med Nucl Imagen Mol 2019;38:160–66 doi:10.1016/j.remn.2018.12.001 pmid:31053556
    CrossRefPubMed
  27. 27.↵
    1. Chandra A,
    2. Dervenoulas G,
    3. Politis M
    ; Alzheimer’s Disease Neuroimaging Initiative. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neurol 2019;266:1293–1302 doi:10.1007/s00415-018-9016-3 pmid:30120563
    CrossRefPubMed
  28. 28.↵
    1. Nasrabady SE,
    2. Rizvi B,
    3. Goldman JE, et al
    . White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun 2018;6:22 doi:10.1186/s40478-018-0515-3 pmid:29499767
    CrossRefPubMed
  29. 29.↵
    1. Belaidi AA,
    2. Bush AI
    . Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 2016;139(Suppl 1):179–97 doi:10.1111/jnc.13425 pmid:26545340
    CrossRefPubMed
  30. 30.↵
    1. Gao L,
    2. Jiang J,
    3. Cai Z, et al
    . Brain iron deposition analysis using susceptibility-weighted imaging and its association with body iron levels in patients with mild cognitive impairment. Mol Med Rep 2017;16:8209–15 doi:10.3892/mmr.2017.7668 pmid:28990041
    CrossRefPubMed
  31. 31.↵
    1. Hohenfeld C,
    2. Werner CJ,
    3. Reetz K
    . Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker. Neuroimage Clin 2018;18:849–70 doi:10.1016/j.nicl.2018.03.013 pmid:29876270
    CrossRefPubMed
  32. 32.↵
    1. Li HJ,
    2. Hou XH,
    3. Liu HH, et al
    . Towards systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies. Hum Brain Mapp 2015;36:1217–32 doi:10.1002/hbm.22689 pmid:25411150
    CrossRefPubMed
  33. 33.↵
    1. Wilson H,
    2. Pagano G,
    3. Politis M
    . Dementia spectrum disorders: lessons learnt from decades with PET research. J Neural Transm (Vienna) 2019;126:233–51 doi:10.1007/s00702-019-01975-4 pmid:30762136
    CrossRefPubMed
  34. 34.↵
    1. Brown RK,
    2. Bohnen NI,
    3. Wong KK, et al
    . Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics 2014;34:684–701 doi:10.1148/rg.343135065 pmid:24819789
    CrossRefPubMed
  35. 35.↵
    1. Olney NT,
    2. Spina S,
    3. Miller BL
    . Frontotemporal dementia. Neurol Clin 2017;35:339–74 doi:10.1016/j.ncl.2017.01.008 pmid:28410663
    CrossRefPubMed
  36. 36.↵
    1. Diehl J,
    2. Grimmer T,
    3. Drzezga A, et al
    . Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia: a PET study. Neurobiol Aging 2004;25:1051–56 doi:10.1016/j.neurobiolaging.2003.10.007 pmid:15212830
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Grimmer T,
    2. Diehl J,
    3. Drzezga A, et al
    . Region-specific decline of cerebral glucose metabolism in patients with frontotemporal dementia: a prospective 18F-FDG-PET study. Dement Geriatr Cogn Disord 2004;18:32–36 doi:10.1159/000077732 pmid:15084791
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Diehl-Schmid J,
    2. Grimmer T,
    3. Drzezga A, et al
    . Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 2007;28:42–50 doi:10.1016/j.neurobiolaging.2005.11.002 pmid:16448722
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Bocchetta M,
    2. Gordon E,
    3. Cardoso MJ, et al
    . Thalamic atrophy in frontotemporal dementia: not just a C9orf72 problem. Neuroimage Clin 2018;18:675–81 doi:10.1016/j.nicl.2018.02.019 pmid:29876259
    CrossRefPubMed
  40. 40.↵
    1. Jakabek D,
    2. Power BD,
    3. MacFarlane MD, et al
    . Regional structural hypo- and hyper-connectivity of frontal-striatal and frontal-thalamic pathways in behavioral variant frontotemporal dementia. Hum Brain Mapp 2018;39:4083–93 doi:10.1002/hbm.24233 pmid:29923666
    CrossRefPubMed
  41. 41.↵
    1. Sheela KR,
    2. Kesavadas C,
    3. Varghese T, et al
    . Assessment of iron deposition in brain in frontotemporal dementia and its correlation with behavioral traits. AJNR Am J Neuroradiol 2017;38:1953–58 doi:10.3174/ajnr.A5339 pmid:28838910
    Abstract/FREE Full Text
  42. 42.↵
    1. Farid K,
    2. Charidimou A,
    3. Baron JC
    . Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: a systematic critical update. Neuroimage Clin 2017;15:247–63 doi:10.1016/j.nicl.2017.05.002 pmid:28560150
    CrossRefPubMed
  43. 43.↵
    1. Miller-Thomas MM,
    2. Sipe AD,
    3. Benzinger TL, et al
    . Multimodality review of amyloid-related disease of the central nervous system. Radiographics 2016;36:1147–63 doi:10.1148/rg.2016150172 pmid:27399239
    CrossRefPubMed
  44. 44.↵
    1. Werring DJ,
    2. Gregoire SM,
    3. Cipolotti L
    . Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci 2010;299:131–35 doi:10.1016/j.jns.2010.08.034 pmid:20850134
    CrossRefPubMed
  45. 45.↵
    1. Jang H,
    2. Jang YK,
    3. Kim HJ, et al
    . Clinical significance of amyloid beta positivity in patients with probable cerebral amyloid angiopathy markers. Eur J Nucl Med Mol Imaging 2019;46:1287–98 doi:10.1007/s00259-019-04314-7 pmid:30937462
    CrossRefPubMed
  46. 46.↵
    1. Charidimou A,
    2. Farid K,
    3. Tsai HH, et al
    . Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance. J Neurol Neurosurg Psychiatry 2018;89:410–17 doi:10.1136/jnnp-2017-316851 pmid:29070646
    Abstract/FREE Full Text
  47. 47.↵
    1. Sarikaya I
    . PET imaging in neurology: Alzheimer’s and Parkinson’s diseases. Nucl Med Commun 2015;36:775–81 doi:10.1097/MNM.0000000000000320 pmid:25920047
    CrossRefPubMed
  48. 48.↵
    1. Shams S,
    2. Fallmar S,
    3. Schwarz S, et al
    . MRI of the swallow tail sign: a useful marker in the diagnosis of Lewy body disease? AJNR Am J Neuroradiol 2017;38:1737–41 doi:10.3174/ajnr.A5274
    Abstract/FREE Full Text
  49. 49.↵
    1. Eidelberg D,
    2. Moeller JR,
    3. Dhawan V, et al
    . The metabolic anatomy of Parkinson’s disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov Disord 1990;5:203–13 doi:10.1002/mds.870050304 pmid:2117706
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Webb J,
    2. Willette AA
    . Aging modifies the effect of GCH1 RS11158026 on DAT uptake and Parkinson’s disease clinical severity. Neurobiol Aging 2017;50:39–46 doi:10.1016/j.neurobiolaging.2016.10.006 pmid:27871051
    CrossRefPubMed
  51. 51.↵
    1. Patro SN,
    2. Glikstein R,
    3. Hanagandi P, et al
    . Role of neuroimaging in multidisciplinary approach towards non-Alzheimer’s dementia. Insights Imaging 2015;6:531–44 doi:10.1007/s13244-015-0421-1 pmid:26206249
    CrossRefPubMed
  52. 52.↵
    1. Bhattacharya K,
    2. Saadia D,
    3. Eisenkraft B, et al
    . Brain magnetic resonance imaging in multiple-system atrophy and Parkinson disease: a diagnostic algorithm. Arch Neurol 2002;59:835–42 doi:10.1001/archneur.59.5.835 pmid:12020268
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Belaidi AA,
    2. Bush AI
    . Iron neurochemisty in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 2016;139(Suppl 1):179–97 doi:10.1111/jnc.13425 pmid:26545340
    CrossRefPubMed
  54. 54.↵
    1. Thomas GE,
    2. Leyland LA,
    3. Scahrag AE, et al
    . Brain iron deposition is linked with cognitive severity in Parkinson’s disease. J Neurol Neurosurg Psych 2020;0:1–8 doi:10.1136/jnnp-2019-322042 pmid:32079673
    CrossRefPubMed
  55. 55.↵
    1. Surendranathan A,
    2. O’Brien JT
    . Clinical imaging in dementia with Lewy bodies. Evid Based Ment Health 2018;21:61–65 doi:10.1136/eb-2017-102848 pmid:29602778
    Abstract/FREE Full Text
  56. 56.↵
    1. McKeith IG,
    2. Boeve BF,
    3. Dickson DW, et al
    . Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology 2017;89:88–100 doi:10.1212/WNL.0000000000004058 pmid:28592453
    Abstract/FREE Full Text
  57. 57.↵
    1. McColgan P,
    2. Tabrizi SJ
    . Huntington’s disease: a clinical review. Eur J Neurol 2018;25(1):24–23 doi:10.1111/ene.13413 pmid:28817209
    CrossRefPubMed
  58. 58.↵
    1. Agosta F,
    2. Altomare D,
    3. Festari C, et al
    . EANM-EAN Task Force for the Prescription of FDG-PET for Dementing Neurodegenerative Disorders. Clinical utility of FDG-PET in amyotrophic lateral sclerosis and Huntington’s disease. Eur J Nucl Med Mol Imaging 2018;45:1546–56 doi:10.1007/s00259-018-4033-0 pmid:29717332
    CrossRefPubMed
  59. 59.
    1. Gaura V,
    2. Lavisse S,
    3. Payoux P, et al
    . Association between motor symptoms and brain metabolism in early Huntingon disease. JAMA Neurol 2017;74:1088–96 doi:10.1001/jamaneurol.2017.1200 pmid:28672395
    CrossRefPubMed
  60. 60.↵
    1. Pagano G,
    2. Niccolini F,
    3. Politis M
    . Current status of PET imaging in Huntington’s disease. Eur J Nucl Med Mol Imaging 2016;43:1171–82 doi:10.1007/s00259-016-3324-6 pmid:26899245
    CrossRefPubMed
  61. 61.↵
    1. Caobelli F,
    2. Cobelli M,
    3. Pizzocaro C, et al
    . The role of neuroimaging in evaluating patients affected by Creutzfeld-Jakob disease: a systematic review of the literature. J Neuroimaging 2015;25:2–13 doi:10.1111/jon.12098 pmid:24593302
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Complete Evaluation of Dementia: PET and MRI Correlation and Diagnosis for the Neuroradiologist
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J.D. Oldan, V.L. Jewells, B. Pieper, T.Z. Wong
Complete Evaluation of Dementia: PET and MRI Correlation and Diagnosis for the Neuroradiologist
American Journal of Neuroradiology Apr 2021, DOI: 10.3174/ajnr.A7079

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Complete Evaluation of Dementia: PET and MRI Correlation and Diagnosis for the Neuroradiologist
J.D. Oldan, V.L. Jewells, B. Pieper, T.Z. Wong
American Journal of Neuroradiology Apr 2021, DOI: 10.3174/ajnr.A7079
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Evaluation of Neurodegenerative Disorders with Amyloid-{beta}, Tau, and Dopaminergic PET Imaging: Interpretation Pitfalls
  • Interpretable Brain Disease Classification and Relevance-Guided Deep Learning
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Review Articles

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire