Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleHead and Neck Imaging
Open Access

Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes

M. Han, E.J. Ha and J.H. Park
American Journal of Neuroradiology December 2020, DOI: https://doi.org/10.3174/ajnr.A6922
M. Han
aFrom the Department of Radiology, Ajou University School of Medicine, Suwon, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Han
E.J. Ha
aFrom the Department of Radiology, Ajou University School of Medicine, Suwon, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.J. Ha
J.H. Park
aFrom the Department of Radiology, Ajou University School of Medicine, Suwon, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.H. Park
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Park SH,
    2. Kressel HY
    . Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci 2018;33:e152 doi:10.3346/jkms.2018.33.e152 pmid:29805337
    CrossRefPubMed
  2. 2.↵
    1. Park SH,
    2. Han K
    . Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–09 doi:10.1148/radiol.2017171920 pmid:29309734
    CrossRefPubMed
  3. 3.↵
    1. Park SH
    . Regulatory approval versus clinical validation of artificial intelligence diagnostic tools. Radiology 2018;288:910–11 doi:10.1148/radiol.2018181310 pmid:30040041
    CrossRefPubMed
  4. 4.↵
    1. Li X,
    2. Zhang S,
    3. Zhang Q, et al
    . Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol 2019;20:193–201 doi:10.1016/S1470-2045(18)30762-9 pmid:30583848
    CrossRefPubMed
  5. 5.↵
    1. Chi J,
    2. Walia E,
    3. Babyn P, et al
    . Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. J Digit Imaging 2017;30:477–86 doi:10.1007/s10278-017-9997-y pmid:28695342
    CrossRefPubMed
  6. 6.↵
    1. Buda M,
    2. Wildman-Tobriner B,
    3. Castor K, et al
    . Deep learning-based segmentation of nodules in thyroid ultrasound: improving performance by utilizing markers present in the images. Ultrasound Med Biol 2020;46:415–21 doi:10.1016/j.ultrasmedbio.2019.10.003 pmid:31699547
    CrossRefPubMed
  7. 7.↵
    1. Song J,
    2. Chai YJ,
    3. Masuoka H, et al
    . Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules. Medicine (Baltimore) 2019;98:e15133 doi:10.1097/MD.0000000000015133 pmid:30985680
    CrossRefPubMed
  8. 8.↵
    1. Kim DW,
    2. Jang HY,
    3. Kim KW, et al
    . Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405–10 doi:10.3348/kjr.2019.0025 pmid:30799571
    CrossRefPubMed
  9. 9.↵
    1. Choi YJ,
    2. Baek JH,
    3. Park HS, et al
    . A computer-aided diagnostic system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment. Thyroid 2017;27:546–52 doi:10.1089/thy.2016.0372 pmid:28071987
    CrossRefPubMed
  10. 10.↵
    1. Yoo YJ,
    2. Ha EJ,
    3. Cho YJ, et al
    . A computer-aided diagnostic system for thyroid nodules on ultrasonography: initial clinical experience. Korean J Radiol 2018;28:1532–37 doi:10.3348/kjr.2018.19.4.665 pmid:29962872
    CrossRefPubMed
  11. 11.↵
    1. Jeong EY,
    2. Kim HL,
    3. Ha EJ, et al
    . Computer-aided diagnostic system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators. Eur Radiol 2019;29:1978–85 doi:10.1007/s00330-018-5772-9 pmid:30350161
    CrossRefPubMed
  12. 12.↵
    1. Park VY,
    2. Han K,
    3. Seong YK, et al
    . Diagnosis of thyroid nodules: performance of a deep learning convolutional neural network model vs radiologists. Sci Rep 2019;9:17843 doi:10.1038/s41598-019-54434-1 pmid:31780753
    CrossRefPubMed
  13. 13.↵
    1. Haugen BR
    . 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: what is new and what has changed? Cancer 2017;123:372–81 doi:10.1002/cncr.30360 pmid:27741354
    CrossRefPubMed
  14. 14.↵
    1. Shin JH,
    2. Baek JH,
    3. Chung J, et al
    ; Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol 2016;17:370–95 doi:10.3348/kjr.2016.17.3.370 pmid:27134526
    CrossRefPubMed
  15. 15.↵
    1. Ha EJ,
    2. Baek JH,
    3. Na DG
    . Risk stratification of thyroid nodules on ultrasonography: current status and perspectives. Thyroid 2017;27:1463–68 doi:10.1089/thy.2016.0654 pmid:28946821
    CrossRefPubMed
  16. 16.↵
    1. Kim HL,
    2. Ha EJ,
    3. Han M
    . Real-world performance of computer-aided diagnostic system for thyroid nodules using ultrasonography. Ultrasound Med Biol 2019;45:2672–78 doi:10.1016/j.ultrasmedbio.2019.05.032 pmid:31262524
    CrossRefPubMed
  17. 17.↵
    1. Persichetti A,
    2. Stasio E,
    3. Coccaro C, et al
    . Inter- and intraobserver agreement in the assessment of thyroid nodule ultrasound features and classification systems: a blinded multicenter study. Thyroid 2020;30:237–42 doi:10.1089/thy.2019.0360 pmid:31952456
    CrossRefPubMed
  18. 18.↵
    1. Ha EJ,
    2. Baek JH,
    3. Na DG
    . Deep convolutional neural network models for the diagnosis of thyroid cancer. Lancet Oncol 2019;20:e130 doi:10.1016/S1470-2045(19)30086-5 pmid:30842054
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Han, E.J. Ha, J.H. Park
Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes
American Journal of Neuroradiology Dec 2020, DOI: 10.3174/ajnr.A6922

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes
M. Han, E.J. Ha, J.H. Park
American Journal of Neuroradiology Dec 2020, DOI: 10.3174/ajnr.A6922
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • MRI of the Parasellar Ligaments
  • ASL Sensitivity for Head and Neck Paraganglioma
  • Post SRS Peritumoral Hyperintense Signal of VSs
Show more Head and Neck Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire