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ORIGINAL RESEARCH
NEUROIMAGING PHYSICS/FUNCTIONAL NEUROIMAGING/CT AND MRI TECHNOLOGY

Probabilistic Presurgical Language fMRI Atlas of Patients
with Brain Tumors

Jian Ming Teo, Vinodh A. Kumar, Jina Lee, Rami W. Eldaya, Ping Hou, Mu-Lan Jen, Kyle R. Noll, Peng Wei,
Sherise D. Ferguson, Sujit S. Prabhu, Max Wintermark, and Ho-Ling Liu

ABSTRACT

BACKGROUND AND PURPOSE: Patients with brain tumors have high intersubject variation in putative language regions, which may
limit the utility of straightforward application of healthy subject brain atlases in clinical scenarios. The purpose of this study was to
develop a probabilistic functional brain atlas that consolidates language functional activations of sentence completion and Silent
Word Generation language paradigms using a large sample of patients with brain tumors.

MATERIALS AND METHODS: The atlas was developed using retrospectively collected fMRI data from patients with brain tumors
who underwent their first standard-of-care presurgical language fMRI scan at our institution between July 18, 2015, and May 13,
2022. Three hundred seventeen patients (861 fMRI scans) were used to develop the language functional atlas. An independent pre-
surgical language fMRI data set of 39 patients with brain tumors from a previous study was used to evaluate our atlas. Family-wise
error–corrected binary functional activation maps from sentence completion, letter fluency, and category fluency presurgical fMRI
were used to create probability overlap maps and pooled probabilistic overlap maps in Montreal Neurological Institute standard
space. The Wilcoxon signed-rank test was used to determine a significant difference in the maximum Dice coefficient for our atlas
compared with a meta-analysis-based template with respect to expert-delineated primary language area activations.

RESULTS: Probabilities of activating the left anterior primary language area and left posterior primary language area in the temporal
lobe were 87.9% and 91.5%, respectively, for sentence completion, 88.5% and 74.2%, respectively, for letter fluency, and 83.6% and
67.6%, respectively, for category fluency. Maximum Dice coefficients for templates derived from our language atlas were signifi-
cantly higher than the meta-analysis-based template in the left anterior primary language area (0.351 and 0.326, respectively,
P, .05) and the left posterior primary language area in the temporal lobe (0.274 and 0.244, respectively, P, .005).

CONCLUSIONS: Brain tumor patient- and paradigm-specific probabilistic language atlases were developed. These atlases had supe-
rior spatial agreement with fMRI activations in individual patients compared with the meta-analysis-based template.

ABBREVIATIONS: aPLA ¼ anterior PLA; BTLA ¼ basal temporal language area; CAT ¼ category fluency; DLPFC ¼ dorsolateral prefrontal cortex; LETT ¼ letter
fluency; MNI ¼ Montreal Neurological Institute; PLA ¼ primary language area; POM ¼ probabilistic overlap map; pPLAP ¼ posterior PLA in the parietal lobe;
pPLAT ¼ posterior PLA in the temporal lobe; SENT ¼ sentence completion; SMA ¼ supplementary motor area

Brain atlases provide a common framework to interpret, com-
municate, and use large amounts of neuroimaging data after

accounting for individual differences.1 Our current understand-
ing of the human brain suggests that structural anatomy alone is
insufficient to explain functional characteristics;2 hence, func-
tional atlases play a crucial role in consolidating and advancing

current research on brain function.3,4 Clinically, atlases of canoni-
cal language or other functional areas have been used for laterality
assessment,5 network categorization,6 and biomarker discovery.7

Such applications leverage atlases developed from healthy individ-
uals, though patients with brain diseases have discernible varia-
tions in brain anatomy and functions. While disease-specific
population-based structural brain atlases have been previously
developed from MRI data,8 currently, there is no atlas developedReceived March 1, 2024; accepted after revision June 9.
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using functional imaging data, specifically language data, from a
sizable disease-specific population.

For patients with brain tumors, studies have demonstrated
substantial intersubject variation in putative language regions,
which can be attributed to tumor infiltration and surrounding
edema promoting cortical reorganization and functional dis-
placement.9-11 Thus, straightforward applications of atlases devel-
oped using data from healthy individuals may have limited utility
in patients with brain tumors. In the past 2 decades, fMRI has
emerged as the standard of care in many institutions for localiz-
ing eloquent cortices and lateralizing language functions for pre-
operative planning of brain tumor surgery.12,13 Given the
availability of preoperative fMRI data and the use of increasingly
standardized procedures,14,15 it is possible to assemble fMRI-
based functional atlases that consider the intersubject variations
of patients with brain tumors.

Because language is multifaceted (phonologic, semantic, and
so forth) and involves a highly complex network of brain
areas,16,17 functional mapping results can vary with the language
task, task paradigm, and patient performance. For preoperative
fMRI, studies have advocated for the use of multiple task para-
digms to generate reliable and accurate activation of language
networks.18,19 To alleviate widespread variability in clinical
practice, the American Society of Functional Neuroradiology
recommends standard sets of language paradigms, with the top
2 types of paradigms being sentence completion (SENT) and
Silent Word Generation for adult patients.12,15

This study aimed to develop a probabilistic functional brain
atlas to consolidate language activations from these 2 types of
paradigms in patients with brain tumors. For evaluation, tem-
plates of anterior and posterior primary language areas (PLAs)
were generated from the atlas and compared with a meta-analy-
sis-based template20 by their spatial similarity with a separate
data set of presurgical fMRI studies.

MATERIALS AND METHODS
Subjects
This retrospective study was approved by the institutional
review board at our institution, and the requirement for patient

informed consent was waived. Initially, 324 patients who had
undergone their first standard-of-care presurgical language fMRI
between July 18, 2015, and May 13, 2022, were considered. Each
fMRI study included at least 1 of the 3 paradigms: SENT, letter
fluency (LETT), and category fluency (CAT). Patients with head
motion exceeding 2-mm translation or 2° rotation were excluded.
In total, 7 patients were excluded due to incomplete data (n ¼ 3)
or not having any language fMRI scans that met our head motion
criteria (n ¼ 4), leading to 317 included patients (183 men and
134 women; mean age, 51 [SD, 16] years) with 861 fMRI scans
for generating the language atlases [Online Supplemental Data]
for patient demographics and clinical characteristics). These
fMRI scans consisted of SENT from 281 patients (157 men and
124 women; mean age, 50 [SD, 16] years), CAT from 293 patients
(169 men and 124 women; mean age, 50 [SD, 16 ] years), and
LETT from 287 patients (166 men and 121 women; mean age, 50
[SD, 16] years).

For evaluation, we used a separate fMRI data set from a previ-
ous study that included 39 patients with brain tumors (22 men
and 17 women; mean age, 48 [SD, 15] years).21 This data set,
which includes 38 SENT and 34 LETT fMRI scans, was acquired
at our institution using identical acquisition protocols and task
paradigms.

Image Acquisition
All MRI scans were performed on 3T clinical scanners (GE
HealthCare). fMRI scans were acquired using a T2*WI gradient-
echo EPI sequence (TR/TE ¼ 2000 ms/25 ms; flip angle ¼ 90°;
parallel imaging acceleration factor ¼ 2; 32 slices with 4-mm
thickness and no gap; in-plane resolution ¼ 3.75� 3.75 mm2;
duration ¼ 4minutes). Anatomic images were obtained using
a 3D T1WI inversion recovery–prepared spoiled gradient-echo
sequence (TR/TE/TI ¼ 6.1/2.1/400 ms; flip angle ¼ 20°; 1.0 �
1.0� 1.2 mm3 voxel) and a T2WI FLAIR sequence (TR/TE/TI ¼
10,000/142/2250 ms; 1.0� 1.0� 2.0 mm3 voxel).

Language paradigms included 6 cycles of 20-second control
and 20-second task blocks. For SENT, task blocks consisted of
incomplete sentences, and patients were tasked to think of a
word to fill a blank. For SENT control blocks, patients were

SUMMARY

PREVIOUS LITERATURE: The analysis of language fMRI data acquired from patients with brain tumor is typically supported by
atlases developed from predominantly healthy subjects. However substantial intersubject variation in patients with brain tumor
may adversely affect the utility of straightforward application of such atlases. While disease-specific population-based structural
brain atlases have been developed from MRI data, there is no atlas developed by using functional imaging data, specifically lan-
guage data, from a sizable disease-specific population.

KEY FINDINGS: Significantly better spatial agreement with expert-delineated language activations in individual patients with brain
tumor was found for templates generated from a probabilistic language atlas developed by using patients with brain tumor
compared with a meta-analysis-based template. Probabilities of each activating primary and ancillary languages areas in both
hemispheres were determined for clinical language paradigms.

KNOWLEDGE ADVANCEMENT: Development of a probabilistic language atlas based on clinical language fMRIs of patients with
brain tumor has potential clinical and research applications in language laterality assessment, network categorization, and bio-
marker discovery.
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shown 4 gibberish sentences in a format resembling that in the
active block. For LETT task blocks, patients were shown a letter
and tasked to covertly generate words beginning with that letter.
For CAT task blocks, patients were shown a category (eg, ani-
mals or types of food) and tasked to covertly generate words
related to the category. For LETT and CAT control blocks,
patients were asked to tap their fingers on their thumb bilater-
ally. The paradigms were displayed with an MRI-compatible liq-
uid crystal display (SensaVue; Philips Healthcare).

Image Analysis and Atlas Construction
Image analyses were performed using Analysis of Functional
Neuro Images (AFNI; http://afni.nimh.nih.gov/afni)22 for indi-
vidual fMRI analysis except for spatial normalization, SPM12
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) for spatial
normalization, and in-house Python scripts.23 fMRI preprocessing
included motion-correction, slice-timing correction, coregistration
with 3D T1WI spatial normalization to Montreal Neurological
Institute (MNI) space, and spatial smoothing with an isotropic
6-mm width at half maximum Gaussian kernel. General Linear
Model with a canonical hemodynamic response function was
used to generate t value activation maps. Significantly activated
clusters (P , .05, family-wise error–corrected) were determined
using AFNI 3dClustSim to obtain the cluster threshold at the
uncorrected cluster-forming threshold of P, .0001. The thresh-
olded t value map was then binarized to form an activation mask for
each fMRI scan.

Language atlases for each paradigm were obtained as proba-
bilistic overlap maps (POMs) by adding binary activation masks
divided by the number of contributing patients. A probabilistic
language atlas was also calculated as a pooled POM by adding all
binary activation masks across the 3 paradigms divided by the
total number of fMRI scans used.

Probability of fMRI Paradigms Activating Language Areas
Automated Anatomic Labeling Atlas 3 (https://www.gin.cnrs.fr/
en/tools/aal/)24 was applied to determine the probability that
each fMRI paradigm activated language-related ROIs after
spatial transformation to the MNI space25 using Advanced
Normalization Tools (http://stnava.github.io/ANTs/).26 The
following ROIs were studied (Online Supplemental Data): an-
terior PLA (aPLA), posterior PLA in the temporal lobe
(pPLAT), posterior PLA in the parietal lobe (pPLAP), supplemen-
tary motor area (SMA), dorsolateral prefrontal cortex (DLPFC),
basal temporal language area (BTLA), and insula. For each para-
digm, the probability of detecting activation within each ROI was
determined as the percentage of patients having activated clusters
overlapping with the ROI.

Comparison with a Meta-Analysis-Based Template
PLA templates from the atlas were generated and compared with
a meta-analysis-based language template on the basis of its spatial
similarity to fMRI activations in a separate fMRI data set of 39
patients with brain tumors. The templates were generated by
constraining the pooled probabilistic language atlas with the
anatomic aPLA and pPLAT ROIs described above. The meta-
analysis-based language template was obtained from a Neurosynth

(https://www.neurosynth.org/) result of 1101 fMRI studies with
the same anatomic constraints.20

Details of the separate fMRI data set were described in a previ-
ous study.21 Briefly, after standard fMRI processing, 2 board-
certified neuroradiologists with expertise in clinical fMRI out-
lined significantly activated areas in the aPLA (focusing on the
posterior inferior frontal gyrus, including the pars triangularis
and pars opercularis) and the pPLAT (focusing on the posterior
superior temporal gyrus and posterior middle temporal gyrus).
Variations in anatomy and fMRI cluster distribution were consid-
ered on an individual patient basis. In total, 62 aPLA and 61
pPLAT activation maps were obtained.

The Dice coefficient was used to evaluate the spatial similarity
between the templates and the activation maps of the separate
patient data sets within the anatomic ROIs of aPLA and pPLAT.
We varied the thresholds of the 2 templates at fixed intervals
(0.1% for the probabilistic atlas–based template; maximum
z score/1000 for the meta-analysis-based template), and Dice coef-
ficients were calculated for each thresholded template. The maxi-
mumDice coefficient across thresholds was used for comparison.

Statistical Analysis
The Wilcoxon signed-rank tests were performed to determine
significant differences between templates in the maximum Dice
coefficient. Statistical analyses were conducted with scipy.stats.
wilcoxon (https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.wilcoxon.html) (Python 3.8.13, Scipy 1.8.1). A P value
, .05 was considered statistically significant.

RESULTS
Language Atlases from Individual Paradigms
The language atlases from individual paradigms are illustrated in
Fig 1. Consistently across the 3 paradigms, the left aPLA, left
DLPFC, left SMA, and right cerebellum had a high probability of
overlap. Among the 3 paradigms, SENT had voxels with a higher
probability of overlap in the left pPLAT (Fig 1A), while CAT had
voxels with a higher overlap in the occipital lobe (Fig 1C).

Probability of fMRI Paradigms Activating Language Areas
The Table presents the probabilities of activating in each of the
language-related ROIs with the SENT, LETT, and CAT para-
digms. Generally, across the 3 paradigms, greater probabilities of
activating in language-related ROIs were found in the left hemi-
sphere than in the right hemisphere. All 3 paradigms had .80%
probability of activating areas in the left aPLA, left DLPFC, and
left and right SMA, whereas only SENT had.80% probability of
activating in the left pPLAT, and only CAT had.80% probability
of activating in the right DLPFC. In the left pPLAT and pPLAP,
SENT had noticeably higher probabilities (91.5% and 76.9%,
respectively) than LETT (74.2% and 53.0%, respectively) and
CAT (67.6% and 56.0%, respectively).

Probabilistic Language Atlas
The probabilistic language atlas, built on the basis of a pooled
POM that consisted of activation maps from 861 language fMRI
scans, is presented in Fig 2 as a penetrance map. The left hemi-
sphere had, overall, more extensive and higher overlap probability
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in the atlas than the right hemisphere. PLAs and ancillary language
areas, including aPLA, pPLAT, pPLAP, pre-SMA, DLPFC, BTLA,
and insula, were clearly identified with a 5% probability threshold
(Fig 2). The regions containing voxels with $40% probability of
overlap included the left aPLA, left DLPFC, and pre-SMA. Peak
probabilities of overlap for the left pPLAT and pPLAp were 24%
and 12%, respectively.

Comparison with the Meta-Analysis-Based Template
Figure 3 presents boxplots comparing the maximum Dice coeffi-
cients between the PLA activations of the evaluation of the fMRI
data set and the PLA templates derived from the probabilistic lan-
guage atlas versus the Neurosynth meta-analysis-based results
obtained from varying thresholds for the templates. The maxi-
mum Dice coefficients for templates derived from the probabilis-
tic language atlas were significantly higher than those for the
meta-analysis-based templates both in aPLA (0.351 and 0.326,

respectively, P, .05) and in pPLAT (0.274 and 0.244, respectively,
P , .005). Figure 4 illustrates the fMRI activations and templates
overlaid on T2 FLAIR images of 2 representative patients. Both
patients A and B have glioblastoma in the left frontal lobe. At the
threshold with a maximum Dice coefficient, the template from the
probabilistic language atlas had noticeably better spatial agreement
with pPLAT activations in patient A. For patient B, the template
derived from the probabilistic language atlas demonstrated better
spatial agreement with both aPLA and pPLAT activations.

DISCUSSION
Language atlases provide templates for quantitative assessment
of language mapping, such as localization, lateralization, and
strength, as well as for automated detection of language networks
with resting-state fMRI.5-7 This study presents the first language
atlas built from preoperative fMRI results of patients with brain
tumors using the language paradigms similar to those recom-
mended by the American Society of Functional Neuroradiology
(ie, SENT and Silent Word Generation).15

Although patients with brain tumors can have discernible
intersubject variation in functional activations, language atlases
from this study involve many fMRI activations projected onto a
standard space. Thus, we were able to reproduce known charac-
teristics of the language network. For example, critical language
regions that are commonly assessed clinically, such as the Broca
area (aPLA), Wernicke area (pPLAT), angular and supramargi-
nal gyrus (pPLAP), DLPFC, pre-SMA, and BTLA, can be
observed.18,27,28 Left-hemisphere dominance is still observed
considering the higher probability of overlap in left-hemisphere
PLAs and ancillary language areas compared with their right-
hemisphere counterparts.27,28

In agreement with the literature, we observed that the seman-
tic task (SENT) was more likely to activate posterior PLAs com-
pared with the 2 Silent Word Generation tasks (CAT and
LETT).15,29 This observation can be attributed to sentence-
completion tasks being more proficient at activating the posterior
language network.29,30 Across all 3 paradigms, the higher proba-
bility of overlap in pPLAT compared with pPLAP agrees with a
previous study of language regions in presurgical fMRI.18 We
also found that the probability of detecting activation in the right
DLPFC for the CAT task was higher than for SENT and LETT
tasks. This finding can be attributed to more likely recruitment of
the right DLPFC for the CAT task, which is corroborated by a
separate study on verbal fluency paradigms,31 and to the involve-
ment of the right DLPFC in retrieval tasks.32 The probability of
detecting activation in the SMA for both hemispheres was similar
across the 3 paradigms, a likely consequence of the intersubject
variation during spatial normalization and the 6-mm isotropic
smoothing applied during preprocessing. Considering that SMA
laterality is known to corroborate language laterality,5 it can still
be observed that the spatial extent of SMA activations is asym-
metric toward the left hemisphere on the POM.

The pooled probabilistic language atlas developed in this
study is equivalent to the weighted average of the 3 language par-
adigm POMs. Thus, the pooled probabilistic language atlas devel-
oped in this study emphasizes areas of activation common across
the 3 paradigms. On the basis of use case and context, the pooling

FIG 1. Language functional atlases based on probabilistic overlap
maps of individual paradigms. The atlases are presented using glass
brain projection (https://nilearn.github.io/dev/modules/generated/
nilearn.plotting.plot_glass_brain.html). L indicates left hemisphere; R,
right hemisphere.

Probability of activation across 3 language paradigms

Paradigm
Probability of Activation (%)

SENT LETT CAT
ROI L R L R L R
aPLA 87.9 61.2 88.5 62.4 83.6 74.1
pPLAT 91.5 66.9 74.2 48.8 67.6 47.8
pPLAP 76.9 39.9 53.0 30.3 56.0 39.2
SMA 90.7 84.0 91.6 90.6 94.5 90.4
DLPFC 94.3 63.0 89.5 69.3 91.5 84.6
BTLA 68.0 65.5 55.7 57.5 68.3 63.5
Insula 59.4 43.8 65.9 51.2 59.7 52.6

Note:— L indicates left hemisphere; R, right hemisphere.
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strategy and choice of paradigms to include can differ. Thus, we
had also created language atlases from single paradigms and
made them available. The distinguishing attribute between our
language atlases and others developed from healthy individuals is

information on intersubject variation. In our atlases, this differ-
ence is encapsulated by the spatial extent of the atlas at a specified
overlap threshold, with higher thresholds corresponding to a

lower tolerance for variation. For example, the spatial extent of
areas with higher overlap in the frontal lobe is continuous
between the proximally close aPLA and DLPFC in the left hemi-

sphere and can be attributed to using a population of patients
with brain tumors for atlas building; these patient populations
are heterogeneous in terms of functional anatomy.9 Given the

implementation of the POM methodology, sources of intersub-
ject variation taken into consideration include intrinsic variation,
normalization imprecision due to lesion-distorted anatomy, and

functional reorganization due to tumor invasion.
We compared our results with those of Neurosynth because it

is a widely-referenced large-scale platform for automated synthesis

of fMRI data. The Neurosynth result is a statistical inference map
generated using a x2 test of independence and informs if coordi-
nates of a voxel have been reported more consistently in studies
involving the term “language” than in studies that did not.20

Therefore, it allowed us to calculate Dice coefficients in a similar
fashion among varying thresholds to ensure a fair comparison.
The comparison demonstrated that our templates had better agree-
ment with individual patient’s fMRIs. This outcome may be attrib-
uted to the Neurosynth meta-analysis including fMRI studies with
different cohorts, primarily healthy individuals, various task and
resting-state fMRI paradigms, and different acquisition and analy-
sis methods, whereas our atlas was built from a uniform source of
fMRI data. In addition, for patients with brain tumors, the position
of a tumor with respect to the classic/principal functional anterior
Broca and posterior Wernicke areas can influence the locoregional
functional reorganization. Given the large group of patients
included in the study, it is possible that filtering for contributing
patients with similar tumor locations (eg, anterior or posterior)
during atlas development may allow better spatial agreement with
the evaluation data set.

We envision our atlas as having potential clinical and research
applications through the derivation of templates for ROIs. An
example would be language assessment of patients with brain
tumors in which templates of functional ROI atlases based on
healthy individuals are often used to calculate the laterality index.
Templates generated from our atlas account for functional anat-
omy distortions due to the tumor, which may improve the fidelity
of the calculated laterality index.5,33 Another potential application
is in imaging biomarker studies, wherein postwarping of primary
and ancillary language areas into patient space, templates from
our atlas can serve as language localizers for quantifying imaging
measures, whether from fMRI activations of more specific para-
digms, or different MRI sequences, or different imaging modal-
ities.34,35 Our atlas could also be used to guide resting-state fMRI
template matching for detecting language networks.6,36 These
applications could rely on manual delineation of language areas
by experts, but atlases help to make the process automated and
less operator-dependent. The potential clinical implications of
this study will depend on the improvement with each different
use of the atlas, eg, more accurate assessment of language laterali-
zation, imaging biomarker quantification, and resting-state fMRI

FIG 3. Boxplots of maximum Dice coefficients for probabilistic lan-
guage atlas–derived versus Neurosynth-derived templates. Dice coef-
ficients were calculated across thresholds for each template with
respect to each individual’s activations in aPLA and pPLAT. The maxi-
mum Dice coefficient across thresholds was used to construct the
boxplot. Horizontal orange lines indicate median values, and blue
dots indicate mean values among subjects (n¼ 39). Single asterisk,
P, . 05; double asterisks, P, . 005.

FIG 2. Pooled probabilistic language functional atlas presented as a penetrance map overlaid on T1WI standard MNI brain images. Z indicates
MNI coordinate of each axial slice in millimeters.
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language mapping. Further validation studies and clinical trials
may be needed to assess the practicality and effectiveness of the

atlas in clinical settings. Although the existence of large lesions

and distorted anatomy may introduce the potential inaccuracy of

spatial registration,37 recent studies have demonstrated that such

errors are reduced with more modern deformable registration

methods, allowing reasonably good performance even in patients

with brain tumors.38 In addition, for large ROIs such as PLAs,

the misregistration may remain local and its effect would be spe-

cific to applications (eg, laterality calculation, biomarker quantifi-

cation, template matching). If the ROI is far from the tumor, eg,

using the aPLA atlas to calculate the laterality index for a patient’s

tumor near the pPLA, the effect of spatial registration should be

minimum. If the use of an atlas directly focuses on the language

ROI covering/adjacent to lesions, we would recommend that the

users inspect the registration closely. Again, because the ROIs

have large spatial extents, the overall effect may not be significant.

However, when there are concerns, one can consider extending

the ROIs by applying a lower probability threshold on the atlas.

This is one of the advantages of the probabilistic atlas.
This study has some limitations. First, this is a single-institution

study with MRI data gathered from limited scanner platforms.
The data set reflects the typical patient population undergoing
presurgical fMRI in our institution. Including data from other
institutions, which would incorporate more diverse patient
cohorts and/or fMRI paradigms/methods, could further refine
the atlas. In parallel, multicenter studies have shown that fMRI
data acquired on different scanners will have different activation
effect sizes and spatial smoothness.39 This result may impact the
atlas on areas with lower overlap probabilities (extents). However,
we expect the central tendencies of high-overlap probabilities to

remain similar, and corresponding brain regions identified in our

atlas would still be useful for appropriate language-related analy-

ses. Second, our atlas was developed using only data from patients

with brain tumors. However, a substantial portion of presurgical

fMRI studies are performed for patients requiring brain tumor

resection.40 Third, only clinical language generation (LETT and

CAT) and semantic paradigms (SENT) were used to develop the

atlas. Thus, the functional anatomy typically recruited in these

tasks is emphasized in our atlas. Other fMRI task paradigms may

yield different weightings in language areas and may involve addi-

tional brain regions. The potential implications of this variation

would likely depend on its application and whether the weights

and the additional regions are used, eg, for assessing language lat-

eralization or for assisting resting-state fMRI analysis.

CONCLUSIONS
We have developed probabilistic language atlases comprising
861 presurgical language fMRI scans from 317 patients with
brain tumors. Three paradigms were used in our study, and
probabilities of each activating primary and ancillary languages
areas in both hemispheres were determined. We found signifi-
cantly better spatial agreement with expert-delineated language
activations in individual patients for the PLA templates generated
from our atlas compared to a meta-analysis-based template.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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