Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Review ArticleNeuroimaging Physics/Functional Neuroimaging/CT and MRI Technology

A Review of Intracranial Aneurysm Imaging Modalities, from CT to State-of-the-Art MR

Sammy Allaw, Kameel Khabaz, Tyler C. Given, Dominic Montas, Roberto J. Alcazar-Felix, Abhinav Srinath, Tareq Kass-Hout, Timothy J. Carroll, Michael C. Hurley and Sean P. Polster
American Journal of Neuroradiology June 2025, 46 (6) 1082-1092; DOI: https://doi.org/10.3174/ajnr.A8549
Sammy Allaw
aFrom the Indiana University School of Medicine (S.A., T.C.G.), Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kameel Khabaz
bDavid Geffen School of Medicine (K.K.), University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tyler C. Given
aFrom the Indiana University School of Medicine (S.A., T.C.G.), Indianapolis, Indiana
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dominic Montas
cDepartment of Neurological Surgery (D.M., R.J.A.-F., A.S., T.K.-H., S.P.P.), University of Chicago Pritzker School of Medicine, Chicago, Illinois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roberto J. Alcazar-Felix
cDepartment of Neurological Surgery (D.M., R.J.A.-F., A.S., T.K.-H., S.P.P.), University of Chicago Pritzker School of Medicine, Chicago, Illinois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Abhinav Srinath
cDepartment of Neurological Surgery (D.M., R.J.A.-F., A.S., T.K.-H., S.P.P.), University of Chicago Pritzker School of Medicine, Chicago, Illinois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tareq Kass-Hout
cDepartment of Neurological Surgery (D.M., R.J.A.-F., A.S., T.K.-H., S.P.P.), University of Chicago Pritzker School of Medicine, Chicago, Illinois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy J. Carroll
dDepartment of Radiology (T.J.C., M.C.H.), The University of Chicago, Chicago, Illinois .
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Timothy J. Carroll
Michael C. Hurley
dDepartment of Radiology (T.J.C., M.C.H.), The University of Chicago, Chicago, Illinois .
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean P. Polster
cDepartment of Neurological Surgery (D.M., R.J.A.-F., A.S., T.K.-H., S.P.P.), University of Chicago Pritzker School of Medicine, Chicago, Illinois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sean P. Polster
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Vlak MH,
    2. Algra A,
    3. Brandenburg R, et al
    . Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 2011;10:626–36 doi:10.1016/S1474-4422(11)70109-0 pmid:21641282
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Forget TR,
    2. Benitez R,
    3. Veznedaroglu E, et al
    . A review of size and location of ruptured intracranial aneurysms. Neurosurgery 2001;49:1322–25; discussion 1325–26 doi:10.1097/00006123-200112000-00006 pmid:11846931
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Lehman VT,
    2. Brinjikji W
    . Vessel wall imaging of unruptured intracranial aneurysms: ready for prime time? Not so fast!. AJNR Am J Neuroradiol 2019;40:E26–29 doi:10.3174/ajnr.A6048 pmid:31048296
    FREE Full Text
  4. 4.↵
    1. Tryfonidis M,
    2. Evans AL,
    3. Coley SC, et al
    . The value of radio-anatomical features on non-contrast CT scans in localizing the source in aneurysmal subarachnoid haemorrhage. Clin Anat 2007;20:618–23 doi:10.1002/ca.20475 pmid:17674417
    CrossRefPubMed
  5. 5.↵
    1. Backes D,
    2. Rinkel GJE,
    3. Kemperman H, et al
    . Time-dependent test characteristics of head computed tomography in patients suspected of nontraumatic subarachnoid hemorrhage. Stroke 2012;43:2115–19 doi:10.1161/STROKEAHA.112.658880 pmid:22821609
    Abstract/FREE Full Text
  6. 6.↵
    1. Edlow JA,
    2. Caplan LR
    . Avoiding pitfalls in the diagnosis of subarachnoid hemorrhage. N Engl J Med 2000;342:29–36 doi:10.1056/NEJM200001063420106 pmid:10620647
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Haller S,
    2. Haacke EM,
    3. Thurnher MM, et al
    . Susceptibility-weighted imaging: technical essentials and clinical neurologic applications. Radiology 2021;299:3–26 doi:10.1148/radiol.2021203071 pmid:33620291
    CrossRefPubMed
  8. 8.↵
    1. Verma RK,
    2. Kottke R,
    3. Andereggen L, et al
    . Detecting subarachnoid hemorrhage: comparison of combined FLAIR/SWI versus CT. Eur J Radiol 2013;82:1539–45 doi:10.1016/j.ejrad.2013.03.021 pmid:23632159
    CrossRefPubMed
  9. 9.↵
    1. Rustemi O,
    2. Alaraj A,
    3. Shakur SF, et al
    . Detection of unruptured intracranial aneurysms on noninvasive imaging: is there still a role for digital subtraction angiography? Surg Neurol Int 2015;6:175 doi:10.4103/2152-7806.170029pmid:26674519
    CrossRefPubMed
  10. 10.↵
    1. Wong SC,
    2. Nawawi O,
    3. Ramli N, et al
    . Benefits of 3D rotational DSA compared with 2D DSA in the evaluation of intracranial aneurysm. Acad Radiol 2012;19:701–07 doi:10.1016/j.acra.2012.02.012 pmid:22578227
    CrossRefPubMed
  11. 11.↵
    1. Dhar S,
    2. Tremmel M,
    3. Mocco J, et al
    . Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 2008;63:185–97 doi:10.1227/01.NEU.0000316847.64140.81 pmid:18797347
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Willinsky RA,
    2. Taylor SM,
    3. TerBrugge K, et al
    . Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 2003;227:522–28 doi:10.1148/radiol.2272012071 pmid:12637677
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Bendszus M,
    2. Koltzenburg M,
    3. Burger R, et al
    . Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet 1999;354:1594–97 doi:10.1016/S0140-6736(99)07083-X pmid:10560674
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Gibbs GF,
    2. Huston J,
    3. Bernstein MA, et al
    . Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol 2004;25:84–87 pmid:14729534
    Abstract/FREE Full Text
  15. 15.↵
    1. Yanamadala V,
    2. Sheth SA,
    3. Walcott BP, et al
    . Non-contrast 3D time-of-flight magnetic resonance angiography for visualization of intracranial aneurysms in patients with absolute contraindications to CT or MRI contrast. J Clin Neurosci 2013;20:1122–26 doi:10.1016/j.jocn.2012.12.005 pmid:23685107
    CrossRefPubMed
  16. 16.↵
    1. Kodama T,
    2. Watanabe K
    . Influence of imaging parameters, flow velocity, and pulsatile flow on three-dimensional time-of-flight MR angiography: experimental studies. Eur J Radiol 1997;26:83–91 doi:10.1016/S0720-048X(96)01152-7
    CrossRefPubMed
  17. 17.↵
    1. Wilcock DJ,
    2. Jaspan T,
    3. Worthington BS
    . Problems and pitfalls of 3-D TOF magnetic resonance angiography of the intracranial circulation. Clin Radiol 1995;50:526–32 doi:10.1016/s0009-9260(05)83186-1 pmid:7656518
    CrossRefPubMed
  18. 18.↵
    1. HaiFeng L,
    2. YongSheng X,
    3. YangQin X, et al
    . Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis. Neuroradiology 2017;59:1083–92 doi:10.1007/s00234-017-1905-0 pmid:28887618
    CrossRefPubMed
  19. 19.↵
    1. Cirillo M,
    2. Scomazzoni F,
    3. Cirillo L, et al
    . Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms. Eur J Radiol 2013;82:e853–59 doi:10.1016/j.ejrad.2013.08.052 pmid:24103356
    CrossRefPubMed
  20. 20.↵
    1. Maki JH,
    2. Chenevert TL,
    3. Prince MR
    . Contrast-enhanced MR angiography. Abdom Imaging 1998;23:469–84 doi:10.1007/s002619900384 pmid:9841060
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Chen X,
    2. Liu Y,
    3. Tong H, et al
    . Meta-analysis of computed tomography angiography versus magnetic resonance angiography for intracranial aneurysm. Medicine (Baltimore) 2018;97:e10771 doi:10.1097/MD.0000000000010771 pmid:29768368
    CrossRefPubMed
  22. 22.↵
    1. van Gelder JM
    . Computed tomographic angiography for detecting cerebral aneurysms: implications of aneurysm size distribution for the sensitivity, specificity, and likelihood ratios. Neurosurgery 2003;53:597–605; discussion 605–06 doi:10.1227/01.neu.0000080060.97293.ee pmid:12943576
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Kim ST,
    2. Brinjikji W,
    3. Kallmes DF
    . Prevalence of intracranial aneurysms in patients with connective tissue diseases: a retrospective study. AJNR Am J Neuroradiol 2016;37:1422–26 doi:10.3174/ajnr.A4718 pmid:26992822
    Abstract/FREE Full Text
  24. 24.↵
    1. Marchese E,
    2. Vignati A,
    3. Albanese A, et al
    . Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents 2010;24:185–95 pmid:20487632
    PubMed
  25. 25.↵
    1. Pera J,
    2. Korostynski M,
    3. Krzyszkowski T, et al
    . Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation? Stroke 2010;41:224–31 doi:10.1161/STROKEAHA.109.562009 pmid:20044533
    Abstract/FREE Full Text
  26. 26.↵
    1. Frösen J,
    2. Piippo A,
    3. Paetau A, et al
    . Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 2004;35:2287–93 doi:10.1161/01.STR.0000140636.30204.da pmid:15322297
    Abstract/FREE Full Text
  27. 27.↵
    1. Hasan D,
    2. Chalouhi N,
    3. Jabbour P, et al
    . Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J Neuroinflammation 2012;9:222 doi:10.1186/1742-2094-9-222 pmid:22999528
    CrossRefPubMed
  28. 28.↵
    1. Vergouwen MDI
    2. Backes D,
    3. van der Schaaf IC, et al
    . Gadolinium enhancement of the aneurysm wall in unruptured intracranial aneurysms is associated with an increased risk of aneurysm instability: a follow-up study. AJNR Am J Neuroradiol 2019;40:1112–16 doi:10.3174/ajnr.A6105 pmid:31221634
    Abstract/FREE Full Text
  29. 29.↵
    1. Leao DJ,
    2. Agarwal A,
    3. Mohan S, et al
    . Intracranial vessel wall imaging: applications, interpretation, and pitfalls. Clin Radiol 2020;75:730–39 doi:10.1016/j.crad.2020.02.006 pmid:32197916
    CrossRefPubMed
  30. 30.↵
    1. Bae H,
    2. Suh S-I,
    3. Yoon WK, et al
    . Correlation of aneurysmal wall enhancement of unruptured intracranial aneurysms on high-resolution vessel-wall imaging with clinical indices and surgical findings. Neurosurgery 2021;89:420–27 doi:10.1093/neuros/nyab178 pmid:34114036
    CrossRefPubMed
  31. 31.↵
    1. Lv N,
    2. Karmonik C,
    3. Chen S, et al
    . Wall enhancement, hemodynamics, and morphology in unruptured intracranial aneurysms with high rupture risk. Transl Stroke Res 2020;11:882–89 doi:10.1007/s12975-020-00782-4 pmid:31960286
    CrossRefPubMed
  32. 32.↵
    1. Larsen N,
    2. Flüh C,
    3. Saalfeld S, et al
    . Multimodal validation of focal enhancement in intracranial aneurysms as a surrogate marker for aneurysm instability. Neuroradiology 2020;62:1627–35 doi:10.1007/s00234-020-02498-6 pmid:32681192
    CrossRefPubMed
  33. 33.↵
    1. Patel A,
    2. Abdalla R,
    3. Allaw R, et al
    . Temporal changes on postgadolinium MR vessel wall imaging captures enhancement kinetics of intracranial atherosclerotic plaques and aneurysms. AJNR Am J Neuroradiol 2024;45:1206–13 doi:10.3174/ajnr.A8370 pmid:39054289
    Abstract/FREE Full Text
  34. 34.↵
    1. Edjlali M,
    2. Guédon A,
    3. Ben Hassen W, et al
    . Circumferential thick enhancement at vessel wall MRI has high specificity for intracranial aneurysm instability. Radiology 2018;289:181–87 doi:10.1148/radiol.2018172879 pmid:29969070
    CrossRefPubMed
  35. 35.↵
    1. Matsushige T,
    2. Shimonaga K,
    3. Mizoue T, et al
    . Focal aneurysm wall enhancement on magnetic resonance imaging indicates intraluminal thrombus and the rupture point. World Neurosurg 2019;127:e578–84 doi:10.1016/j.wneu.2019.03.209 pmid:30928597
    CrossRefPubMed
  36. 36.↵
    1. Cornelissen BM,
    2. Leemans EL,
    3. Coolen BF, et al
    . Insufficient slow-flow suppression mimicking aneurysm wall enhancement in magnetic resonance vessel wall imaging: a phantom study. Neurosurg Focus 2019;47:E19 doi:10.3171/2019.4.FOCUS19235 pmid:31261123
    CrossRefPubMed
  37. 37.↵
    1. Qi H,
    2. Liu X,
    3. Liu P, et al
    . Complementary roles of dynamic contrast-enhanced MR imaging and postcontrast vessel wall imaging in detecting high-risk intracranial aneurysms. AJNR Am J Neuroradiol 2019;40:490–96 doi:10.3174/ajnr.A5983 pmid:30792252
    Abstract/FREE Full Text
  38. 38.↵
    1. Larsen N,
    2. von der Belie C,
    3. Trick D, et al
    . Vessel wall enhancement in unruptured intracranial aneurysms: an indicator for higher risk of rupture? High-resolution MR imaging and correlated histologic findings. AJNR Am J Neuroradiol 2018;39:1617–21 doi:10.3174/ajnr.A5731 pmid:30026386
    Abstract/FREE Full Text
  39. 39.↵
    1. Hudson JS,
    2. Zanaty M,
    3. Nakagawa D, et al
    . Magnetic resonance vessel wall imaging in human intracranial aneurysms. Stroke 2019;50:e1 doi:10.1161/STROKEAHA.118.023701 pmid:30580739
    CrossRefPubMed
  40. 40.↵
    1. Meng H,
    2. Tutino VM,
    3. Xiang J, et al
    . High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 2014;35:1254–62 doi:10.3174/ajnr.A3558 pmid:23598838
    Abstract/FREE Full Text
  41. 41.↵
    1. Texakalidis P,
    2. Hilditch CA,
    3. Lehman V, et al
    . Vessel wall imaging of intracranial aneurysms: systematic review and meta-analysis. World Neurosurg 2018;117:453–58.e1 doi:10.1016/j.wneu.2018.06.008 pmid:29902602
    CrossRefPubMed
  42. 42.↵
    1. Kalsoum E,
    2. Chabernaud Negrier A,
    3. Tuilier T, et al
    . Blood flow mimicking aneurysmal wall enhancement: a diagnostic pitfall of vessel wall MRI using the postcontrast 3D turbo spin-echo MR imaging sequence. AJNR Am J Neuroradiol 2018;39:1065–67 doi:10.3174/ajnr.A5616 pmid:29599170
    Abstract/FREE Full Text
  43. 43.↵
    1. Lindenholz A,
    2. van der Kolk AG,
    3. Zwanenburg JJM, et al
    . The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 2018;286:12–28 doi:10.1148/radiol.2017162096 pmid:29261469
    CrossRefPubMed
  44. 44.↵
    1. Sheinberg DL,
    2. McCarthy DJ,
    3. Elwardany O, et al
    . Endothelial dysfunction in cerebral aneurysms. Neurosurg Focus 2019;47:E3 doi:10.3171/2019.4.FOCUS19221 pmid:31389675
    CrossRefPubMed
  45. 45.↵
    1. Baharoglu MI,
    2. Schirmer CM,
    3. Hoit DA, et al
    . Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis. Stroke 2010;41:1423–30 doi:10.1161/STROKEAHA.109.570770 pmid:20508183
    Abstract/FREE Full Text
  46. 46.↵
    1. Nixon AM,
    2. Gunel M,
    3. Sumpio BE
    . The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg 2010;112:1240–53 doi:10.3171/2009.10.JNS09759 pmid:19943737
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Fukuda S,
    2. Hashimoto N,
    3. Naritomi H, et al
    . Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 2000;101:2532–38 doi:10.1161/01.cir.101.21.2532 pmid:10831529
    Abstract/FREE Full Text
  48. 48.↵
    1. Zhou G,
    2. Zhu Y,
    3. Yin Y, et al
    . Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis. Sci Rep 2017;7:5331 doi:10.1038/s41598-017-05886-w pmid:28706287
    CrossRefPubMed
  49. 49.↵
    1. Koseki H,
    2. Miyata H,
    3. Shimo S, et al
    . Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. Transl Stroke Res 2020;11:80–92 doi:10.1007/s12975-019-0690-y pmid:30737656
    CrossRefPubMed
  50. 50.↵
    1. Cebral J,
    2. Ollikainen E,
    3. Chung BJ, et al
    . Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol 2017;38:119–26 doi:10.3174/ajnr.A4951 pmid:27686488
    Abstract/FREE Full Text
  51. 51.↵
    1. Boussel L,
    2. Rayz V,
    3. McCulloch C, et al
    . Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 2008;39:2997–3002 doi:10.1161/STROKEAHA.108.521617 pmid:18688012
    Abstract/FREE Full Text
  52. 52.↵
    1. Ren Y,
    2. Chen GZ,
    3. Liu Z, et al
    . Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography. Biomed Eng Online 2016;15:50 doi:10.1186/s12938-016-0163-4 pmid:27150439
    CrossRefPubMed
  53. 53.↵
    1. Geers AJ,
    2. Larrabide I,
    3. Radaelli AG, et al
    . Patient-specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study. AJNR Am J Neuroradiol 2011;32:581–86doi:10.3174/ajnr.A2306 pmid:21183614
    Abstract/FREE Full Text
  54. 54.↵
    1. Paritala PK,
    2. Anbananthan H,
    3. Hautaniemi J, et al
    . Reproducibility of the computational fluid dynamic analysis of a cerebral aneurysm monitored over a decade. Sci Rep 2023;13:219 doi:10.1038/s41598-022-27354-w pmid:36604495
    CrossRefPubMed
  55. 55.↵
    1. Valen-Sendstad K,
    2. Mardal K-A,
    3. Mortensen M, et al
    . Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J Biomech 2011;44:2826–32 doi:10.1016/j.jbiomech.2011.08.015 pmid:21924724
    CrossRefPubMed
  56. 56.↵
    1. Rayz VL,
    2. Cohen-Gadol AA
    . Hemodynamics of cerebral aneurysms: connecting medical imaging and biomechanical analysis. Annu Rev Biomed Eng 2020;22:231–56 doi:10.1146/annurev-bioeng-092419-061429 pmid:32212833
    CrossRefPubMed
  57. 57.↵
    1. Han S,
    2. Schirmer CM,
    3. Modarres-Sadeghi Y
    . A reduced-order model of a patient-specific cerebral aneurysm for rapid evaluation and treatment planning. J Biomech 2020;103:109653 doi:10.1016/j.jbiomech.2020.109653 pmid:32037019
    CrossRefPubMed
  58. 58.↵
    1. Formaggia L,
    2. Lamponi D,
    3. Quarteroni A
    . One-dimensional models for blood flow in arteries. J Eng Math 2003;47:251–76 doi:10.1023/B:ENGI.0000007980.01347.29
    CrossRef
  59. 59.↵
    1. Kallmes DF
    . Point: CFD: computational fluid dynamics or confounding factor dissemination. AJNR Am J Neuroradiol 2012;33:395–96 doi:10.3174/ajnr.A2993 pmid:22268081
    FREE Full Text
  60. 60.↵
    1. Oda S,
    2. Shimoda M,
    3. Hirayama A, et al
    . Neuroradiologic diagnosis of minor leak prior to major SAH: diagnosis by T1-FLAIR mismatch. AJNR Am J Neuroradiol 2015;36:1616–22 doi:10.3174/ajnr.A4325 pmid:25977479
    Abstract/FREE Full Text
  61. 61.↵
    1. Larsson HB,
    2. Courivaud F,
    3. Rostrup E, et al
    . Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T1-weighted MRI at 3 Tesla. Magn Reson Med 2009;62:1270–81 doi:10.1002/mrm.22136 pmid:19780145
    CrossRefPubMed
  62. 62.↵
    1. Gordon Y,
    2. Partovi S,
    3. Müller-Eschner M, et al
    . Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc Diagn Ther 2014;4:147–64 doi:10.3978/j.issn.2223-3652.2014.03.01 pmid:24834412
    CrossRefPubMed
  63. 63.↵
    1. Tofts PS,
    2. Brix G,
    3. Buckley DL, et al
    . Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223–32 doi:10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S pmid:10508281
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Vakil P,
    2. Ansari SA,
    3. Cantrell CG, et al
    . Quantifying intracranial aneurysm wall permeability for risk assessment using dynamic contrast-enhanced MRI: a pilot study. AJNR Am J Neuroradiol 2015;36:953–59 doi:10.3174/ajnr.A4225 pmid:25655875
    Abstract/FREE Full Text
  65. 65.↵
    1. Kerwin W. S,
    2. Oikawa M,
    3. Yuan C, et al
    . MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med 2008;59:507–14 doi:10.1002/mrm.21532 pmid:18306402
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Wang Y,
    2. Sun J,
    3. Li R, et al
    . Increased aneurysm wall permeability colocalized with low wall shear stress in unruptured saccular intracranial aneurysm. J Neurol 2022;269:2715–19 doi:10.1007/s00415-021-10869-z pmid:34731309
    CrossRefPubMed
  67. 67.↵
    1. Aref M,
    2. Handbury JD,
    3. Xiuquan Ji J, et al
    . Spatial and temporal resolution effects on dynamic contrast-enhanced magnetic resonance mammography. Magn Reson Imaging 2007;25:14–34 doi:10.1016/j.MRI.2006.09.025 pmid:17222712
    CrossRefPubMed
  68. 68.↵
    1. Hu B,
    2. Shi Z,
    3. Lu L, et al
    ; China Aneurysm AI Project Group. A deep-learning model for intracranial aneurysm detection on CT angiography images in China: a stepwise, multicentre, early-stage clinical validation study. Lancet Digit Health 2024;6:e261–71 doi:10.1016/S2589-7500(23)00268-6 pmid:38519154
    CrossRefPubMed
  69. 69.↵
    1. Heit JJ,
    2. Honce JM,
    3. Yedavalli VS, et al
    . RAPID aneurysm: artificial intelligence for unruptured cerebral aneurysm detection on CT angiography. J Stroke Cerebrovasc Dis 2022;31:106690 doi:10.1016/j.jstrokecerebrovasdis.2022.106690
    CrossRefPubMed
  70. 70.↵
    1. Feng X,
    2. Tong X,
    3. Chen J, et al
    . External validation of the PHASES score in patients with multiple intracranial aneurysms. J Stroke Cerebrovasc Dis 2021;30:105643 doi:10.1016/j.jstrokecerebrovasdis.2021.105643 pmid:33631473
    CrossRefPubMed
  71. 71.↵
    1. Bizjak Ž,
    2. Pernuš F,
    3. Špiclin Ž
    . Deep shape features for predicting future intracranial aneurysm growth. Front Physiol 2021;12:644349 doi:10.3389/fphys.2021.644349 pmid:34276391
    CrossRefPubMed
  72. 72.↵
    1. Xie Y,
    2. Liu S,
    3. Lin H, et al
    . Automatic risk prediction of intracranial aneurysm on CTA image with convolutional neural networks and radiomics analysis. Front Neurol 2023;14:1126949 doi:10.3389/fneur.2023.1126949 pmid:37456640
    CrossRefPubMed
  73. 73.↵
    1. Habibi MA,
    2. Fakhfouri A,
    3. Mirjani MS, et al
    . Prediction of cerebral aneurysm rupture risk by machine learning algorithms: a systematic review and meta-analysis of 18,670 participants. Neurosurg Rev 2024;47:34 doi:10.1007/s10143-023-02271-2 pmid:38183490
    CrossRefPubMed
  74. 74.↵
    1. Zech JR,
    2. Badgeley MA,
    3. Liu M, et al
    . Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLOS Med 2018;15:e1002683 doi:10.1371/journal.pmed.1002683 pmid:30399157
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (6)
American Journal of Neuroradiology
Vol. 46, Issue 6
1 Jun 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Review of Intracranial Aneurysm Imaging Modalities, from CT to State-of-the-Art MR
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Sammy Allaw, Kameel Khabaz, Tyler C. Given, Dominic Montas, Roberto J. Alcazar-Felix, Abhinav Srinath, Tareq Kass-Hout, Timothy J. Carroll, Michael C. Hurley, Sean P. Polster
A Review of Intracranial Aneurysm Imaging Modalities, from CT to State-of-the-Art MR
American Journal of Neuroradiology Jun 2025, 46 (6) 1082-1092; DOI: 10.3174/ajnr.A8549

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
A Comprehensive Review of IA Imaging Modalities
Sammy Allaw, Kameel Khabaz, Tyler C. Given, Dominic Montas, Roberto J. Alcazar-Felix, Abhinav Srinath, Tareq Kass-Hout, Timothy J. Carroll, Michael C. Hurley, Sean P. Polster
American Journal of Neuroradiology Jun 2025, 46 (6) 1082-1092; DOI: 10.3174/ajnr.A8549
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Measuring Hemodynamic Instability of UIAS
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • 3D-Printed Patient-Specific Models of the Aortic Arch for Advanced Visualization of Complex Neurointerventional Cases
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Synthetic MRI based on 3D-QALAS MR Quantification
  • Delta wave MRI
Show more Neuroimaging Physics/Functional Neuroimaging/CT and MRI Technology

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire