Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleNeurointervention

The Cortical Vein Opacification Score (COVES) Is Independently Associated with DSA ASITN Collateral Score

Dhairya A. Lakhani, Aneri B. Balar, Subtain Ali, Musharaf Khan, Hamza Salim, Manisha Koneru, Sijin Wen, Richard Wang, Janet Mei, Argye E. Hillis, Jeremy J. Heit, Greg W. Albers, Adam A. Dmytriw, Tobias D. Faizy, Max Wintermark, Kambiz Nael, Ansaar T. Rai and Vivek S. Yedavalli
American Journal of Neuroradiology May 2025, 46 (5) 921-928; DOI: https://doi.org/10.3174/ajnr.A8601
Dhairya A. Lakhani
aFrom the Department of Radiology and Radiological Sciences (D.A.L., A.B.B., H.S., R.W., J.M., V.S.Y.), Johns Hopkins University, Baltimore, Maryland
bDepartment of Neuroradiology (D.A.L., S.A., M. Khan, A.T.R.), West Virginia University, Morgantown, West Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dhairya A. Lakhani
Aneri B. Balar
aFrom the Department of Radiology and Radiological Sciences (D.A.L., A.B.B., H.S., R.W., J.M., V.S.Y.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Subtain Ali
bDepartment of Neuroradiology (D.A.L., S.A., M. Khan, A.T.R.), West Virginia University, Morgantown, West Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Subtain Ali
Musharaf Khan
bDepartment of Neuroradiology (D.A.L., S.A., M. Khan, A.T.R.), West Virginia University, Morgantown, West Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hamza Salim
aFrom the Department of Radiology and Radiological Sciences (D.A.L., A.B.B., H.S., R.W., J.M., V.S.Y.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hamza Salim
Manisha Koneru
cCooper Medical School of Rowan University (M. Koneru), Camden, New Jersey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sijin Wen
dDepartment of Biostatistics (S.W.), West Virginia University, Morgantown, West Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard Wang
aFrom the Department of Radiology and Radiological Sciences (D.A.L., A.B.B., H.S., R.W., J.M., V.S.Y.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Janet Mei
aFrom the Department of Radiology and Radiological Sciences (D.A.L., A.B.B., H.S., R.W., J.M., V.S.Y.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Argye E. Hillis
eDepartment of Neurology (A.E.H.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeremy J. Heit
fDepartment of Neurology (J.J.H., G.W.A.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeremy J. Heit
Greg W. Albers
fDepartment of Neurology (J.J.H., G.W.A.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam A. Dmytriw
gDepartment of Radiology (A.A.D.), Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Adam A. Dmytriw
Tobias D. Faizy
hDepartment of Radiology (T.D.F.), Neuroendovascular Division, University Medical Center Münster, Münster, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Max Wintermark
iDepartment of Neuroradiology (M.W.), MD Anderson Medical Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Max Wintermark
Kambiz Nael
jDivision of Neuroradiology (K.N.), Department of Radiology, University of California San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kambiz Nael
Ansaar T. Rai
bDepartment of Neuroradiology (D.A.L., S.A., M. Khan, A.T.R.), West Virginia University, Morgantown, West Virginia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ansaar T. Rai
Vivek S. Yedavalli
aFrom the Department of Radiology and Radiological Sciences (D.A.L., A.B.B., H.S., R.W., J.M., V.S.Y.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Berkhemer OA,
    2. Jansen IG,
    3. Beumer D
    ; MR CLEAN Investigators, et al. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke 2016;47:768–76 doi:10.1161/STROKEAHA.115.011788 pmid:26903582
    Abstract/FREE Full Text
  2. 2.↵
    1. Liebeskind DS,
    2. Tomsick TA,
    3. Foster LD
    ; IMS III Investigators, et al. Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke 2014;45:759–64 doi:10.1161/STROKEAHA.113.004072 pmid:24473178
    Abstract/FREE Full Text
  3. 3.↵
    1. Lima FO,
    2. Furie KL,
    3. Silva GS, et al
    . The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke 2010;41:2316–22 doi:10.1161/STROKEAHA.110.592303 pmid:20829514
    Abstract/FREE Full Text
  4. 4.↵
    1. Nambiar V,
    2. Sohn SI,
    3. Almekhlafi MA, et al
    . CTA collateral status and response to recanalization in patients with acute ischemic stroke. AJNR Am J Neuroradiol 2014;35:884–90 doi:10.3174/ajnr.A3817 pmid:24371030
    Abstract/FREE Full Text
  5. 5.↵
    1. Bang OY,
    2. Saver JL,
    3. Kim SJ, et al
    . Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke 2011;42:693–99 doi:10.1161/STROKEAHA.110.595256 pmid:21233472
    Abstract/FREE Full Text
  6. 6.↵
    1. Maas MB,
    2. Lev MH,
    3. Ay H, et al
    . Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke 2009;40:3001–05 doi:10.1161/STROKEAHA.109.552513 pmid:19590055
    Abstract/FREE Full Text
  7. 7.↵
    1. Ramaiah SS,
    2. Mitchell P,
    3. Dowling R, et al
    . Assessment of arterial collateralization and its relevance to intra-arterial therapy for acute ischemic stroke. J Stroke Cerebrovasc Dis 2014;23:399–407 doi:10.1016/j.jstrokecerebrovasdis.2013.03.012 pmid:23601372
    CrossRefPubMed
  8. 8.↵
    1. Higashida RT,
    2. Furlan AJ,
    3. Roberts H
    ; Technology Assessment Committee of the Society of Interventional Radiology, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 2003;34:e109-37 doi:10.1161/01.STR.0000082721.62796.09 pmid:12869717
    CrossRefPubMed
  9. 9.↵
    1. Lakhani DA,
    2. Balar AB,
    3. Koneru M, et al
    . The single-phase CTA clot burden score is independently associated with digital subtraction angiography derived American Society of Interventional and Therapeutic Neuroradiology collateral score. Br J Radiology 2024;97:1959–64
    CrossRefPubMed
  10. 10.↵
    1. Mei J,
    2. Salim HA,
    3. Lakhani DA, et al
    . Lower admission stroke severity is associated with good collateral status in distal medium vessel occlusion stroke. J Neuroimaging 2024;34:424–29 doi:10.1111/jon.13208 pmid:38797931
    CrossRefPubMed
  11. 11.↵
    1. Lakhani DA,
    2. Balar AB,
    3. Koneru M, et al
    . The relative cerebral blood volume (rCBV) < 42% is independently associated with collateral status in anterior circulation large vessel occlusion. J Clin Med 2024;13:1588doi:10.3390/jcm13061588
    CrossRefPubMed
  12. 12.↵
    1. Lakhani DA,
    2. Balar AB,
    3. Koneru M, et al
    . CT perfusion based rCBF <38% volume is independently and negatively associated with digital subtraction angiography collateral score in anterior circulation large vessel occlusions. Neuroradiol J 2024;37:462–67 doi:10.1177/19714009241242639
    CrossRefPubMed
  13. 13.↵
    1. Lakhani DA,
    2. Balar AB,
    3. Koneru M, et al
    . The compensation index is better associated with DSA ASITN collateral score compared to the cerebral blood volume index and hypoperfusion intensity ratio. J Clin Med 2023;12:7365 doi:10.3390/jcm12237365
    CrossRefPubMed
  14. 14.↵
    1. Lakhani DA,
    2. Balar AB,
    3. Koneru M, et al
    . Pretreatment CT perfusion collateral parameters correlate with penumbra salvage in middle cerebral artery occlusion. J Neuroimaging 2024;34:44–49 doi:10.1111/jon.13178 pmid:38057941
    CrossRefPubMed
  15. 15.↵
    1. Jansen IGH,
    2. van Vuuren AB,
    3. van Zwam WH
    ; MR CLEAN Trial Investigators, et al. Absence of cortical vein opacification is associated with lack of intra-arterial therapy benefit in stroke. Radiology 2018;286:643–50 doi:10.1148/radiol.2017162445 pmid:28799861
    CrossRefPubMed
  16. 16.↵
    1. Jansen IGH,
    2. van Vuuren AB,
    3. van Zwam WH
    ; MR CLEAN Trial Investigators, et al. Absence of cortical vein opacification is associated with lack of intra-arterial therapy benefit in stroke. Radiology 2018;286:731doi:10.1148/radiol.2017174043 pmid:29356644
    CrossRefPubMed
  17. 17.↵
    1. Beyer SE,
    2. von Baumgarten L,
    3. Thierfelder KM, et al
    . Predictive value of the velocity of collateral filling in patients with acute ischemic stroke. J Cereb Blood Flow Metab 2015;35:206–12 doi:10.1038/jcbfm.2014.182 pmid:25370859
    CrossRefPubMed
  18. 18.↵
    1. Faizy TD,
    2. Mlynash M,
    3. Kabiri R, et al
    . The cerebral collateral cascade: comprehensive blood flow in ischemic stroke. Neurology 2022;98:e2296–306 doi:10.1212/WNL.0000000000200340 pmid:35483902
    Abstract/FREE Full Text
  19. 19.↵
    1. Faizy TD,
    2. Heit JJ
    . Rethinking the collateral vasculature assessment in acute ischemic stroke: the comprehensive collateral cascade. Top Magn Reson Imaging 2021;30:181–86 doi:10.1097/RMR.0000000000000274 pmid:34397967
    CrossRefPubMed
  20. 20.↵
    1. Winkelmeier L,
    2. Heit JJ,
    3. Adusumilli G, et al
    . Poor venous outflow profiles increase the risk of reperfusion hemorrhage after endovascular treatment. J Cereb Blood Flow Metab 2023;43:72–83 doi:10.1177/0271678X221127089 pmid:36127828
    CrossRefPubMed
  21. 21.↵
    1. Winkelmeier L,
    2. Heit JJ,
    3. Adusumilli G, et al
    . Hypoperfusion intensity ratio is correlated with the risk of parenchymal hematoma after endovascular stroke treatment. Stroke 2023;54:135–43 doi:10.1161/STROKEAHA.122.040540 pmid:36416127
    CrossRefPubMed
  22. 22.↵
    1. Faizy TD,
    2. Mlynash M,
    3. Kabiri R, et al
    . Favourable arterial, tissue-level and venous collaterals correlate with early neurological improvement after successful thrombectomy treatment of acute ischaemic stroke. J Neurol Neurosurg Psychiatry Epub ahead of print May 16, 2022 doi:10.1136/jnnp-2021-328041
    CrossRefPubMed
  23. 23.↵
    1. Faizy TD,
    2. Kabiri R,
    3. Christensen S, et al
    . Distinct intra-arterial clot localization affects tissue-level collaterals and venous outflow profiles. Eur J Neurol 2021;28:4109–16 doi:10.1111/ene.15079 pmid:34424584
    CrossRefPubMed
  24. 24.↵
    1. Faizy TD,
    2. Winkelmeier L,
    3. Mlynash M, et al
    . Brain edema growth after thrombectomy is associated with comprehensive collateral blood flow. J Neurointerv Surg 2024;16:1334–40 doi:10.1136/jnis-2023-020921 pmid:37918909
    Abstract/FREE Full Text
  25. 25.↵
    1. Faizy TD,
    2. Kabiri R,
    3. Christensen S, et al
    . Favorable venous outflow profiles correlate with favorable tissue-level collaterals and clinical outcome. Stroke 2021;52:1761–67 doi:10.1161/STROKEAHA.120.032242 pmid:33682452
    CrossRefPubMed
  26. 26.↵
    1. Simera I,
    2. Moher D,
    3. Hoey J, et al
    . A catalogue of reporting guidelines for health research. Eur J Clin Invest 2010;40:35–53 doi:10.1111/j.1365-2362.2009.02234.x pmid:20055895
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Waqas M,
    2. Mokin M,
    3. Primiani CT, et al
    . Large vessel occlusion in acute ischemic stroke patients: a dual-center estimate based on a broad definition of occlusion site. J Stroke Cerebrovasc Dis 2020;29:104504 doi:10.1016/j.jstrokecerebrovasdis.2019.104504 pmid:31761735
    CrossRefPubMed
  28. 28.↵
    1. Adams HP,
    2. Bendixen BH,
    3. Kappelle LJ, et al
    . Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 1993;24:35–41 doi:10.1161/01.str.24.1.35 pmid:7678184
    Abstract/FREE Full Text
  29. 29.↵
    1. Larrue V,
    2. von Kummer RR,
    3. Müller A, et al
    . Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke 2001;32:438–41 doi:10.1161/01.str.32.2.438 pmid:11157179
    Abstract/FREE Full Text
  30. 30.↵
    1. Yedavalli V,
    2. Adel Salim H,
    3. Lakhani DA, et al
    . High hypoperfusion intensity ratio is independently associated with very poor outcomes in large ischemic core stroke. Clin Neuroradiol [Epub ahead of print] October 7, 2024 doi:10.1007/s00062-024-01463-7
    CrossRef
  31. 31.↵
    1. Salim HA,
    2. Huang S,
    3. Lakhani DA, et al
    . Perfusion imaging predicts short-term clinical outcome in isolated posterior cerebral artery occlusion stroke. J Neuroimaging 2024;34:766–72 doi:10.1111/jon.13235 pmid:39223766
    CrossRefPubMed
  32. 32.↵
    1. Tan JC,
    2. Dillon WP,
    3. Liu S, et al
    . Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 2007;61:533–43 doi:10.1002/ana.21130 pmid:17431875
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Dundamadappa S,
    2. Iyer K,
    3. Agrawal A, et al
    . Multiphase CT angiography: a useful technique in acute stroke imaging-collaterals and beyond. AJNR Am J Neuroradiol 2021;42:221–27 doi:10.3174/ajnr.A6889 pmid:33384289
    Abstract/FREE Full Text
  34. 34.↵
    1. Committee of the ASITN
    . Intraarterial thrombolysis: ready for prime time? Executive Committee of the ASITN. American Society of Interventional and Therapeutic Neuroradiology. AJNR Am J Neuroradiol 2001;22:55–58 pmid:11158888
    FREE Full Text
  35. 35.↵
    1. Ai Z,
    2. Jiang L,
    3. Zhao B, et al
    . Hypoperfusion intensity ratio correlates with angiographic collaterals and infarct growth in acute stroke with thrombectomy. Curr Med Imaging 2023;19:1561–69 doi:10.2174/1573405619666230123142657 pmid:36734888
    CrossRefPubMed
  36. 36.↵
    1. Guenego A,
    2. Mlynash M,
    3. Christensen S, et al
    . Hypoperfusion ratio predicts infarct growth during transfer for thrombectomy. Ann Neurol 2018;84:616–20 doi:10.1002/ana.25320 pmid:30168180
    CrossRefPubMed
  37. 37.↵
    1. Guenego A,
    2. Marcellus DG,
    3. Martin BW, et al
    . Hypoperfusion intensity ratio is correlated with patient eligibility for thrombectomy. Stroke 2019;50:917–22 doi:10.1161/STROKEAHA.118.024134 pmid:30841821
    CrossRefPubMed
  38. 38.↵
    1. Guenego A,
    2. Fahed R,
    3. Albers GW, et al
    . Hypoperfusion intensity ratio correlates with angiographic collaterals in acute ischaemic stroke with M1 occlusion. Eur J Neurol 2020;27:864–70 doi:10.1111/ene.14181 pmid:32068938
    CrossRefPubMed
  39. 39.↵
    1. Imaoka Y,
    2. Shindo S,
    3. Miura M, et al
    . Hypoperfusion intensity ratio and CBV index as predictive parameters to identify underlying intracranial atherosclerotic stenosis in endovascular thrombectomy. J Neuroradiol 2023;50:424–30 doi:10.1016/j.neurad.2022.10.005 pmid:36270500
    CrossRefPubMed
  40. 40.↵
    1. Murray NM,
    2. Culbertson CJ,
    3. Wolman DN, et al
    . Hypoperfusion intensity ratio predicts malignant edema and functional outcome in large-vessel occlusive stroke with poor revascularization. Neurocrit Care 2021;35:79–86 doi:10.1007/s12028-020-01152-6 pmid:33200332
    CrossRefPubMed
  41. 41.↵
    1. Olivot JM,
    2. Mlynash M,
    3. Inoue M
    ; DEFUSE 2 Investigators, et al. Hypoperfusion intensity ratio predicts infarct progression and functional outcome in the DEFUSE 2 cohort. Stroke 2014;45:1018–23 doi:10.1161/STROKEAHA.113.003857 pmid:24595591
    Abstract/FREE Full Text
  42. 42.↵
    1. Faizy TD,
    2. Kabiri R,
    3. Christensen S, et al
    . Association of venous outflow profiles and successful vessel reperfusion after thrombectomy. Neurology 2021;96:e2903-11 doi:10.1212/WNL.0000000000012106 pmid:33952649
    CrossRefPubMed
  43. 43.↵
    1. Hoffman H,
    2. Ziechmann R,
    3. Swarnkar A, et al
    . Cortical vein opacification for risk stratification in anterior circulation endovascular thrombectomy. J Stroke Cerebrovasc Dis 2019;28:1710–17 doi:10.1016/j.jstrokecerebrovasdis.2019.02.016 pmid:30878371
    CrossRefPubMed
  44. 44.↵
    1. Winkelmeier L,
    2. Broocks G,
    3. Kniep H, et al
    . Venous outflow profiles are linked to clinical outcomes in ischemic stroke patients with extensive baseline infarct. J Stroke 2022;24:372–82 doi:10.5853/jos.2022.01046 pmid:36221940
    CrossRefPubMed
  45. 45.↵
    1. Xia H,
    2. Sun H,
    3. He S, et al
    . Absent cortical venous filling is associated with aggravated brain edema in acute ischemic stroke. AJNR Am J Neuroradiol 2021;42:1023–29 doi:10.3174/ajnr.A7039 pmid:33737267
    Abstract/FREE Full Text
  46. 46.↵
    1. Bendszus M,
    2. Fiehler J,
    3. Subtil F
    ; TENSION Investigators, et al. Endovascular thrombectomy for acute ischaemic stroke with established large infarct: multicentre, open-label, randomised trial. Lancet 2023;402:1753–63 doi:10.1016/S0140-6736(23)02032-9 pmid:37837989
    CrossRefPubMed
  47. 47.↵
    1. Ben Hassen W,
    2. Malley C,
    3. Boulouis G, et al
    . Inter- and intraobserver reliability for angiographic leptomeningeal collateral flow assessment by the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) scale. J Neurointerv Surg 2019;11:338–41 doi:10.1136/neurintsurg-2018-014185 pmid:30131382
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (5)
American Journal of Neuroradiology
Vol. 46, Issue 5
1 May 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Cortical Vein Opacification Score (COVES) Is Independently Associated with DSA ASITN Collateral Score
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Dhairya A. Lakhani, Aneri B. Balar, Subtain Ali, Musharaf Khan, Hamza Salim, Manisha Koneru, Sijin Wen, Richard Wang, Janet Mei, Argye E. Hillis, Jeremy J. Heit, Greg W. Albers, Adam A. Dmytriw, Tobias D. Faizy, Max Wintermark, Kambiz Nael, Ansaar T. Rai, Vivek S. Yedavalli
The Cortical Vein Opacification Score (COVES) Is Independently Associated with DSA ASITN Collateral Score
American Journal of Neuroradiology May 2025, 46 (5) 921-928; DOI: 10.3174/ajnr.A8601

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
COVES is Linked to DSA ASITN Collateral Score
Dhairya A. Lakhani, Aneri B. Balar, Subtain Ali, Musharaf Khan, Hamza Salim, Manisha Koneru, Sijin Wen, Richard Wang, Janet Mei, Argye E. Hillis, Jeremy J. Heit, Greg W. Albers, Adam A. Dmytriw, Tobias D. Faizy, Max Wintermark, Kambiz Nael, Ansaar T. Rai, Vivek S. Yedavalli
American Journal of Neuroradiology May 2025, 46 (5) 921-928; DOI: 10.3174/ajnr.A8601
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Rescue Reentry in Carotid Near-Occlusion
  • Contour Neurovascular System: Five Year Follow Up
  • Effect of SARS-CoV2 on Endovascular Thrombectomy
Show more Neurointervention

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire