Index by author
Larson, Nicholas B.
- Artificial IntelligenceYou have accessImpact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain NeoplasmsGirish Bathla, Neetu Soni, Ian T. Mark, Yanan Liu, Nicholas B. Larson, Blake A. Kassmeyer, Suyash Mohan, John C. Benson, Saima Rathore and Amit K. AgarwalAmerican Journal of Neuroradiology September 2024, 45 (9) 1291-1298; DOI: https://doi.org/10.3174/ajnr.A8280
Lee, Jeong Sub
- Pediatric NeuroimagingYou have accessComparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CTJeong Sub Lee, John Kim, Jayapalli R. Bapuraj and Ashok SrinivasanAmerican Journal of Neuroradiology September 2024, 45 (9) 1322-1326; DOI: https://doi.org/10.3174/ajnr.A8276
Lee, Kyong Joon
- Artificial IntelligenceYou have accessAutomated Detection of Steno-Occlusive Lesion on Time-of-Flight MR Angiography: An Observer Performance StudyHunjong Lim, Dongjun Choi, Leonard Sunwoo, Jae Hyeop Jung, Sung Hyun Baik, Se Jin Cho, Jinhee Jang, Tackeun Kim and Kyong Joon LeeAmerican Journal of Neuroradiology September 2024, 45 (9) 1253-1259; DOI: https://doi.org/10.3174/ajnr.A8334
Lev, Michael H.
- Emergency NeuroradiologyYou have accessImplementation of a Survey Spine MR Imaging Protocol for Cord Compression in the Emergency Department: Experience at a Level 1 Trauma CenterMercy H. Mazurek, Annie R. Abruzzo, Alexander H. King, Erica Koranteng, Grant Rigney, Winston Lie, Shahaan Razak, Rajiv Gupta, William A. Mehan, Michael H. Lev, Joshua A. Hirsch, Karen Buch and Marc D. SucciAmerican Journal of Neuroradiology September 2024, 45 (9) 1378-1384; DOI: https://doi.org/10.3174/ajnr.A8326
Li, Wei
- NeurointerventionYou have accessMCA Parallel Anatomic Scanning MR Imaging–Guided Recanalization of a Chronic Occluded MCA by Endovascular TreatmentCheng-Chun Liu, Yi Yang, Jun Dong, Zhi-Qiang Sun, Qi-Sheng Ran, Wei Li, Wang-Sheng Jin and Meng ZhangAmerican Journal of Neuroradiology September 2024, 45 (9) 1227-1229; DOI: https://doi.org/10.3174/ajnr.A8303
Lie, Winston
- Emergency NeuroradiologyYou have accessImplementation of a Survey Spine MR Imaging Protocol for Cord Compression in the Emergency Department: Experience at a Level 1 Trauma CenterMercy H. Mazurek, Annie R. Abruzzo, Alexander H. King, Erica Koranteng, Grant Rigney, Winston Lie, Shahaan Razak, Rajiv Gupta, William A. Mehan, Michael H. Lev, Joshua A. Hirsch, Karen Buch and Marc D. SucciAmerican Journal of Neuroradiology September 2024, 45 (9) 1378-1384; DOI: https://doi.org/10.3174/ajnr.A8326
Lim, Hunjong
- Artificial IntelligenceYou have accessAutomated Detection of Steno-Occlusive Lesion on Time-of-Flight MR Angiography: An Observer Performance StudyHunjong Lim, Dongjun Choi, Leonard Sunwoo, Jae Hyeop Jung, Sung Hyun Baik, Se Jin Cho, Jinhee Jang, Tackeun Kim and Kyong Joon LeeAmerican Journal of Neuroradiology September 2024, 45 (9) 1253-1259; DOI: https://doi.org/10.3174/ajnr.A8334
Lin, Kuei-You
- EDITOR'S CHOICEHead and Neck ImagingYou have accessRetrolabyrinthine Bone Thickness as a Radiologic Marker for the Hypoplastic Endotype in Menière DiseaseAmy F. Juliano, Kuei-You Lin, Nitesh Shekhrajka, Donghoon Shin, Steven D. Rauch and Andreas H. EckhardAmerican Journal of Neuroradiology September 2024, 45 (9) 1363-1369; DOI: https://doi.org/10.3174/ajnr.A8339
There are 2 major endotypes of Menière disease: one with a hypoplastic, underdeveloped endolymphatic sac and one with a normally developed sac that degenerates over time. This study explored the link between angular trajectory of the vestibular aqueduct and the thickness of the retrolabyrinthine bone to provide differentiation between MD endotypes using CT and MRI. The average retrolabyrinthine bone thickness was statistically significantly different between endotypes with retrolabyrinthine bone thickness >=1.2 mm, effectively ruling out hypoplastic Menière disease.
Link, Michael J.
- Head and Neck ImagingYou have accessImaging Findings Post-Stereotactic Radiosurgery for Vestibular Schwannoma: A Primer for the RadiologistGirish Bathla, Parv M. Mehta, John C. Benson, Amit K. Agrwal, Neetu Soni, Michael J. Link, Matthew L. Carlson and John I. LaneAmerican Journal of Neuroradiology September 2024, 45 (9) 1194-1201; DOI: https://doi.org/10.3174/ajnr.A8175
Linkugel, Andrew D.
- EDITOR'S CHOICEArtificial IntelligenceYou have accessMR Cranial Bone Imaging: Evaluation of Both Motion-Corrected and Automated Deep Learning Pseudo-CT Estimated MR ImagesAndrew D. Linkugel, Tongyao Wang, Parna Eshraghi Boroojeni, Cihat Eldeniz, Yasheng Chen, Gary B. Skolnick, Paul K. Commean, Corinne M. Merrill, Jennifer M. Strahle, Manu S. Goyal, Hongyu An and Kamlesh B. PatelAmerican Journal of Neuroradiology September 2024, 45 (9) 1284-1290; DOI: https://doi.org/10.3174/ajnr.A8335
In this study, the authors developed automated motion correction and used deep learning to generate pseudo-CT cranial images from MR images. Compared with CT, pseudo-CT had 100% specificity and 100% sensitivity for suture closure and 100% specificity and 90% sensitivity for skull fractures.