Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleHead and Neck Imaging
Open Access

Microstructural Visual Pathway White Matter Alterations in Primary Open-Angle Glaucoma: A Neurite Orientation Dispersion and Density Imaging Study

S. Haykal, A. Invernizzi, J. Carvalho, N.M. Jansonius and F.W. Cornelissen
American Journal of Neuroradiology May 2022, 43 (5) 756-763; DOI: https://doi.org/10.3174/ajnr.A7495
S. Haykal
aFrom the Laboratory for Experimental Ophthalmology (S.H., A.I., J.C., F.W.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Haykal
A. Invernizzi
aFrom the Laboratory for Experimental Ophthalmology (S.H., A.I., J.C., F.W.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Invernizzi
J. Carvalho
aFrom the Laboratory for Experimental Ophthalmology (S.H., A.I., J.C., F.W.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Carvalho
N.M. Jansonius
bDepartment of Ophthalmology (N.M.J.), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N.M. Jansonius
F.W. Cornelissen
aFrom the Laboratory for Experimental Ophthalmology (S.H., A.I., J.C., F.W.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F.W. Cornelissen
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Tham YC,
    2. Li X,
    3. Wong TY, et al
    . Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014;121:2081–90 doi:10.1016/j.ophtha.2014.05.013 pmid:24974815
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Weinreb RN,
    2. Khaw PT
    . Primary open-angle glaucoma. Lancet 2004;363:1711–20 doi:10.1016/S0140-6736(04)16257-0 pmid:15158634
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Nuzzi R,
    2. Dallorto L,
    3. Rolle T
    . Changes of visual pathway and brain connectivity in glaucoma: a systematic review. Front Neurosci 2018;12:363 doi:10.3389/fnins.2018.00363 pmid:29896087
    CrossRefPubMed
  4. 4.↵
    1. Frezzotti P,
    2. Giorgio A,
    3. Toto F, et al
    . Early changes of brain connectivity in primary open angle glaucoma. Hum Brain Mapp 2016;37:4581–96 doi:10.1002/hbm.23330 pmid:27503699
    CrossRefPubMed
  5. 5.↵
    1. Kaushik M,
    2. Graham SL,
    3. Wang C, et al
    . A topographical relationship between visual field defects and optic radiation changes in glaucoma. Investig Ophthalmol Vis Sci 2014;55:5770–75 doi:10.1167/iovs.14-14733] pmid:25118267
    Abstract/FREE Full Text
  6. 6.↵
    1. Sidek S,
    2. Ramli N,
    3. Rahmat K, et al
    . Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation. Eur J Radiol 2014;83:1437–41 doi:10.1016/j.ejrad.2014.05.014 pmid:24908588
    CrossRefPubMed
  7. 7.↵
    1. Zikou AK,
    2. Kitsos G,
    3. Tzarouchi LC, et al
    . Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol 2012;33:128–34 doi:10.3174/ajnr.A2714 pmid:22116110
    Abstract/FREE Full Text
  8. 8.↵
    1. Tellouck L,
    2. Durieux M,
    3. Coupé P, et al
    . Optic radiations microstructural changes in glaucoma and association with severity: a study using 3Tesla-magnetic resonance diffusion tensor imaging. Invest Ophthalmol Vis Sci 2016;57:6539–47 doi:10.1167/iovs.16-19838 pmid:27918827
    CrossRefPubMed
  9. 9.↵
    1. Zhou W,
    2. Muir ER,
    3. Chalfin S, et al
    . MRI study of the posterior visual pathways in primary open angle glaucoma. J Glaucoma 2017;26:173–81 doi:10.1097/IJG.0000000000000558 pmid:27661989
    CrossRefPubMed
  10. 10.↵
    1. Nucci C,
    2. Mancino R,
    3. Martucci A, et al
    . 3-T diffusion tensor imaging of the optic nerve in subjects with glaucoma: correlation with GDx-VCC, HRT-III and Stratus optical coherence tomography findings. Br J Ophthalmol 2012;96:976–80 doi:10.1136/bjophthalmol-2011-301280 pmid:22628535
    Abstract/FREE Full Text
  11. 11.↵
    1. Chen Z,
    2. Lin F,
    3. Wang J, et al
    . Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Experiment Ophthalmol 2013;41:43–49 doi:10.1111/j.1442-9071.2012.02832.x pmid:22712443
    CrossRefPubMed
  12. 12.↵
    1. Michelson G,
    2. Engelhorn T,
    3. Wärntges S, et al
    . DTI parameters of axonal integrity and demyelination of the optic radiation correlate with glaucoma indices. Graefes Arch Clin Exp Ophthalmol 2013;251:243–53 doi:10.1007/s00417-011-1887-2 pmid:22366916
    CrossRefPubMed
  13. 13.↵
    1. Murai H,
    2. Suzuki Y,
    3. Kiyosawa M, et al
    . Positive correlation between the degree of visual field defect and optic radiation damage in glaucoma patients. Jpn J Ophthalmol 2013;57:257–62 doi:10.1007/s10384-013-0233-0 pmid:23417328
    CrossRefPubMed
  14. 14.↵
    1. Garaci FG,
    2. Bolacchi F,
    3. Cerulli A, et al
    . Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging. Radiology 2009;252:496–501 doi:10.1148/radiol.2522081240 pmid:19435941
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Lu P,
    2. Shi L,
    3. Du H, et al
    . Reduced white matter integrity in primary open-angle glaucoma: A DTI study using tract-based spatial statistics. J Neuroradiol 2013;40:89–93 doi:10.1016/j.neurad.2012.04.001 pmid:22796270
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Song X,
    2. Puyang Z,
    3. Chen A-H, et al
    . Diffusion tensor imaging detects microstructural differences of visual pathway in patients with primary open-angle glaucoma and ocular hypertension. Front Hum Neurosci 2018;12:426 doi:10.3389/fnins.2018.00426 pmid:30459581
    CrossRefPubMed
  17. 17.↵
    1. Haykal S,
    2. Curcic-Blake B,
    3. Jansonius NM, et al
    . Fixel-based analysis of visual pathway white matter in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2019;60:3803–12 doi:10.1167/iovs.19-27447 pmid:31504081
    CrossRefPubMed
  18. 18.↵
    1. Haykal S,
    2. Jansonius NM,
    3. Cornelissen FW
    . Investigating changes in axonal density and morphology of glaucomatous optic nerves using fixel-based analysis. Eur J Radiol 2020;133:109356 doi:10.1016/j.ejrad.2020.109356 pmid:33129102
    CrossRefPubMed
  19. 19.↵
    1. Jones DK,
    2. Knösche TR,
    3. Turner R
    . White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 2013;73:239–54 doi:10.1016/j.neuroimage.2012.06.081 pmid:22846632
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Zhang H,
    2. Schneider T,
    3. Wheeler-Kingshott CA, et al
    . NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61:1000–16 doi:10.1016/j.neuroimage.2012.03.072 pmid:22484410
    CrossRefPubMed
  21. 21.↵
    1. Veraart J,
    2. Fieremans E,
    3. Novikov DS
    . Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 2016;76:1582–93 doi:10.1002/mrm.26059 pmid:26599599
    CrossRefPubMed
  22. 22.↵
    1. Tournier JD,
    2. Smith R,
    3. Raffelt D, et al
    . MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 2019;202:116137 doi:10.1016/j.neuroimage.2019.116137 pmid:31473352
    CrossRefPubMed
  23. 23.↵
    1. Andersson JL,
    2. Skare S,
    3. Ashburner J
    . How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 2003;20:870–88 doi:10.1016/S1053-8119(03)00336-7 pmid:14568458
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Andersson JL,
    2. Sotiropoulos SN
    . An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016;125:1063–78 doi:10.1016/j.neuroimage.2015.10.019 pmid:26481672
    CrossRefPubMed
  25. 25.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M, et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41 doi:10.1006/nimg.2002.1132 pmid:12377157
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Zhang Y,
    2. Brady M,
    3. Smith S
    . Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:45–57 doi:10.1109/42.906424 pmid:11293691
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Smith RE,
    2. Tournier JD,
    3. Calamante F, et al
    . Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 2012;62:1924–38 doi:10.1016/j.neuroimage.2012.06.005 pmid:22705374
    CrossRefPubMed
  28. 28.↵
    1. Jeurissen B,
    2. Tournier JD,
    3. Dhollander T, et al
    . Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 2014;103:411–26 doi:10.1016/j.neuroimage.2014.07.061 pmid:25109526
    CrossRefPubMed
  29. 29.↵
    1. Dale AM,
    2. Fischl B,
    3. Sereno MI
    . Cortical surface-based analysis, I: segmentation and surface reconstruction. Neuroimage 1999;9:179–94 doi:10.1006/nimg.1998.0395 pmid:9931268
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Martínez-Heras E,
    2. Varriano F,
    3. Prčkovska V, et al
    . Improved framework for tractography reconstruction of the optic radiation. PLoS One 2015;10:e0137064 doi:10.1371/journal.pone.0137064 pmid:26376179
    CrossRefPubMed
  31. 31.↵
    1. Ebneter A,
    2. Casson RJ,
    3. Wood JPM, et al
    . Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 2010;51:6448–60 doi:10.1167/iovs.10-5284 pmid:20688732
    Abstract/FREE Full Text
  32. 32.↵
    1. Lee JY,
    2. Jeong HJ,
    3. Lee JH, et al
    . An investigation of lateral geniculate nucleus volume in patients with primary open-angle glaucoma using 7 Tesla magnetic resonance imaging. Invest Ophthalmol Vis Sci 2014;55:3468–76 doi:10.1167/iovs.14-13902 pmid:24722700
    Abstract/FREE Full Text
  33. 33.↵
    1. Zhang YQ,
    2. Li J,
    3. Xu L, et al
    . Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma. Acta Ophthalmol 2012;90:e295–302 doi:10.1111/j.1755-3768.2011.02346.x pmid:22489916
    CrossRefPubMed
  34. 34.↵
    1. Chen Z,
    2. Wang J,
    3. Lin F, et al
    . Correlation between lateral geniculate nucleus atrophy and damage to the optic disc in glaucoma. J Neuroradiol 2013;40:281–87 doi:10.1016/j.neurad.2012.10.004 pmid:23433902
    CrossRefPubMed
  35. 35.↵
    1. Gupta N,
    2. Greenberg G,
    3. de Tilly LN, et al
    . Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br J Ophthalmol 2009;93:56–60 doi:10.1136/bjo.2008.138172 pmid:18697810
    Abstract/FREE Full Text
  36. 36.↵
    1. Boucard CC,
    2. Hernowo AT,
    3. Maguire RP, et al
    . Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 2009;132:1898–1906 doi:10.1093/brain/awp119 pmid:19467992
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Zhang S,
    2. Wang B,
    3. Xie Y, et al
    . Retinotopic changes in the gray matter volume and cerebral blood flow in the primary visual cortex of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2015;56:6171–78 doi:10.1167/iovs.15-17286 pmid:26406275
    CrossRefPubMed
  38. 38.↵
    1. Fukuda M,
    2. Omodaka K,
    3. Tatewaki Y, et al
    . Quantitative MRI evaluation of glaucomatous changes in the visual pathway. PLoS One 2018;13:e0197027 doi:10.1371/journal.pone.0197027 pmid:29985921
    CrossRefPubMed
  39. 39.↵
    1. Haykal S,
    2. Jansonius NM,
    3. Cornelissen FW
    . Progression of visual pathway degeneration in primary open-angle glaucoma: a longitudinal study. Front Hum Neurosci 2021;15:630898–11 doi:10.3389/fnhum.2021.630898 pmid:33854423
    CrossRefPubMed
  40. 40.↵
    1. You Y,
    2. Joseph C,
    3. Wang C, et al
    . Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease. Brain 2019;142:426–42 doi:10.1093/brain/awy338 pmid:30668642
    CrossRefPubMed
  41. 41.↵
    1. Mastropietro A,
    2. Rizzo G,
    3. Fontana L, et al
    . Microstructural characterization of corticospinal tract in subacute and chronic stroke patients with distal lesions by means of advanced diffusion MRI. Neuroradiology 2019;61:1033–45 doi:10.1007/s00234-019-02249-2 pmid:31263922
    CrossRefPubMed
  42. 42.↵
    1. Sacco S,
    2. Caverzasi E,
    3. Papinutto N, et al
    . Neurite orientation dispersion and density imaging for assessing acute inflammation and lesion evolution in MS. AJNR Am J Neuroradiol 2020;41:2219–26 doi:10.3174/ajnr.a6862 pmid:33154077
    Abstract/FREE Full Text
  43. 43.↵
    1. Luo T,
    2. Oladosu O,
    3. Rawji KS, et al
    . Characterizing structural changes with devolving remyelination following experimental demyelination using high angular resolution diffusion MRI and texture analysis. J Magn Reson Imaging 2019;49:1750–59 doi:10.1002/jmri.26328 pmid:30230112
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 43 (5)
American Journal of Neuroradiology
Vol. 43, Issue 5
1 May 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Microstructural Visual Pathway White Matter Alterations in Primary Open-Angle Glaucoma: A Neurite Orientation Dispersion and Density Imaging Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
S. Haykal, A. Invernizzi, J. Carvalho, N.M. Jansonius, F.W. Cornelissen
Microstructural Visual Pathway White Matter Alterations in Primary Open-Angle Glaucoma: A Neurite Orientation Dispersion and Density Imaging Study
American Journal of Neuroradiology May 2022, 43 (5) 756-763; DOI: 10.3174/ajnr.A7495

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Microstructural Visual Pathway White Matter Alterations in Primary Open-Angle Glaucoma: A Neurite Orientation Dispersion and Density Imaging Study
S. Haykal, A. Invernizzi, J. Carvalho, N.M. Jansonius, F.W. Cornelissen
American Journal of Neuroradiology May 2022, 43 (5) 756-763; DOI: 10.3174/ajnr.A7495
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • MRI of the Parasellar Ligaments
  • ASL Sensitivity for Head and Neck Paraganglioma
  • Post SRS Peritumoral Hyperintense Signal of VSs
Show more Head and Neck Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire