Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Application of 7T MRS to High-Grade Gliomas

L. McCarthy, G. Verma, G. Hangel, A. Neal, B.A. Moffat, J.P. Stockmann, O.C. Andronesi, P. Balchandani and C.G. Hadjipanayis
American Journal of Neuroradiology October 2022, 43 (10) 1378-1395; DOI: https://doi.org/10.3174/ajnr.A7502
L. McCarthy
aFrom the Department of Neurosurgery (L.M., C.G.H.), Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. McCarthy
G. Verma
bBioMedical Engineering and Imaging Institute (G.V., P.B.), Icahn School of Medicine at Mount Sinai, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Verma
G. Hangel
cDepartment of Neurosurgery (G.H.)
dHigh-field MR Center (G.H.), Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Hangel
A. Neal
eDepartment of Medicine (A.N.), Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
fDepartment of Neurology (A.N.), Royal Melbourne Hospital, Melbourne, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Neal
B.A. Moffat
gThe Melbourne Brain Centre Imaging Unit (B.A.M.), Department of Radiology, The University of Melbourne, Melbourne, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.A. Moffat
J.P. Stockmann
hA. A. Martinos Center for Biomedical Imaging (J.P.S., O.C.A.), Massachusetts General Hospital, Charlestown, Massachusetts
iHarvard Medical School (J.P.S., O.C.A.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.P. Stockmann
O.C. Andronesi
hA. A. Martinos Center for Biomedical Imaging (J.P.S., O.C.A.), Massachusetts General Hospital, Charlestown, Massachusetts
iHarvard Medical School (J.P.S., O.C.A.), Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O.C. Andronesi
P. Balchandani
bBioMedical Engineering and Imaging Institute (G.V., P.B.), Icahn School of Medicine at Mount Sinai, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Balchandani
C.G. Hadjipanayis
aFrom the Department of Neurosurgery (L.M., C.G.H.), Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G. Hadjipanayis
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Server A,
    2. Josefsen R,
    3. Kulle B, et al
    . Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Acta Radiol 2010;51:316–25 doi:10.3109/02841850903482901 pmid:20092374
    CrossRefPubMed
  2. 2.↵
    1. Wilson TA,
    2. Karajannis MA,
    3. Harter DH
    . Glioblastoma multiforme: state of the art and future therapeutics. Surg Neurol Int 2014;5:64 doi:10.4103/2152-7806.132138 pmid:24991467
    CrossRefPubMed
  3. 3.↵
    1. Wolf KJ,
    2. Chen J,
    3. Coombes J, et al
    . Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nat Rev Mater 2019;4:651–68 doi:10.1038/s41578-019-0135-y pmid:32647587
    CrossRefPubMed
  4. 4.↵
    1. Hou LC,
    2. Veeravagu A,
    3. Hsu AR, et al
    . Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg Focus 2006;20:E5 doi:10.3171/foc.2006.20.4.2 pmid:16709036
    CrossRefPubMed
  5. 5.↵
    1. Zhu H,
    2. Barker PB
    . MRS and spectroscopic imaging of the brain. Methods Mol Biol 2011;711:203–26 doi:10.1007/978-1-61737-992-5_9] pmid:21279603
    CrossRefPubMed
  6. 6.↵
    1. Tkác I,
    2. Andersen P,
    3. Adriany G
    , et al. In vivo 1H NMRS of the human brain at 7 T. Magn Reson Med 2001;46:451–56 doi:10.1002/mrm.1213
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Horská A,
    2. Barker PB
    . Imaging of brain tumors: MRS and metabolic imaging. Neuroimaging Clin N Am 2010;20:293–310 doi:10.1016/j.nic.2010.04.003 pmid:20708548
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Dang L,
    2. White DW,
    3. Gross S, et al
    . Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462:739–44 doi:10.1038/nature08617 pmid:19935646
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Maudsley AA,
    2. Andronesi OC,
    3. Barker PB, et al
    . Advanced magnetic resonance spectroscopic neuroimaging: experts’ consensus recommendations. NMR Biomed 2021;34:e4309 doi:10.1002/nbm.4309 pmid:32350978
    CrossRefPubMed
  10. 10.↵
    1. Ricci R,
    2. Bacci A,
    3. Tugnoli V, et al
    . Metabolic findings on 3T 1H-MRS in peritumoral brain edema. AJNR Am J Neuroradiol 2007;28:1287–91 doi:10.3174/ajnr.A0564 pmid:17698529
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Bertolino N,
    2. Marchionni C,
    3. Ghielmetti F, et al
    . Accuracy of 2-hydroxyglutarate quantification by short-echo proton-MRS at 3 T: a phantom study. Phys Med 2014;30:702–07 doi:10.1016/j.ejmp.2014.03.002 pmid:24685182
    CrossRefPubMed
  12. 12.↵
    1. Cuccarini V,
    2. Antelmi L,
    3. Pollo B, et al
    . In vivo 2-hydroxyglutarate-proton magnetic resonance spectroscopy (3 T, PRESS technique) in treatment-naïve suspect lower-grade gliomas: feasibility and accuracy in a clinical setting. Neurol Sci 2020;41:347–55 doi:10.1007/s10072-019-04087-9 pmid:31650436
    CrossRefPubMed
  13. 13.↵
    1. Kousi E,
    2. Tsougos I,
    3. Tsolaki E, et al
    . Spectroscopic evaluation of glioma grading at 3T: the combined role of short and long TE. ScientificWorldJournal 2012;2012:546171 doi:10.1100/2012/546171 pmid:22919334
    CrossRefPubMed
  14. 14.↵
    1. Laino ME,
    2. Young R,
    3. Beal K, et al
    . Magnetic resonance spectroscopic imaging in gliomas: clinical diagnosis and radiotherapy planning. BJR Open 2020;2:20190026 doi:10.1259/bjro.20190026 pmid:33178960
    CrossRefPubMed
  15. 15.↵
    1. Rutland JW,
    2. Delman BN,
    3. Gill CM, et al
    . Emerging use of ultra-high-field 7T MRI in the study of intracranial vascularity: state of the field and future directions. AJNR Am J Neuroradiol 2020;41:2–9 doi:10.3174/ajnr.A6344 pmid:31879330
    Abstract/FREE Full Text
  16. 16.↵
    1. Morrison MA,
    2. Lupo JM
    . 7-T magnetic resonance imaging in the management of brain tumors. Magn Reson Imaging Clin N Am 2021;29:83–102 doi:10.1016/j.mric.2020.09.007 pmid:33237018
    CrossRefPubMed
  17. 17.↵
    1. Lohmann P,
    2. Werner J-M,
    3. Shah N, et al
    . Combined amino acid positron emission tomography and advanced magnetic resonance imaging in glioma patients. Cancers (Basel) 2019;11:153 doi:10.3390/cancers11020153 pmid:30699942
    CrossRefPubMed
  18. 18.↵
    1. Hoff MN,
    2. McKinney A,
    3. Shellock FG, et al
    . Safety considerations of 7-T MRI in clinical practice. Radiology 2019;292:509–18 doi:10.1148/radiol.2019182742 pmid:31310177
    CrossRefPubMed
  19. 19.↵
    1. Otazo R,
    2. Mueller B,
    3. Ugurbil K, et al
    . Signal-to-noise ratio and spectral linewidth improvements between 1.5 and 7 Tesla in proton echo-planar spectroscopic imaging. Magn Reson Med 2006;56:1200–10 doi:10.1002/mrm.21067 pmid:17094090
    CrossRefPubMed
  20. 20.↵
    1. Barrett TF,
    2. Sarkiss CA,
    3. Dyvorne HA, et al
    . Application of ultrahigh field magnetic resonance imaging in the treatment of brain tumors: a meta-analysis. World Neurosurg 2016;86:450–65 doi:10.1016/j.wneu.2015.09.048 pmid:26409071
    CrossRefPubMed
  21. 21.↵
    1. Stephenson MC
    . Applications of multi-nuclear magnetic resonance spectroscopy at 7T. World J Radiol 2011;3:105–13 doi:10.4329/wjr.v3.i4.105 pmid:21532871
    CrossRefPubMed
  22. 22.↵
    1. Pradhan S,
    2. Bonekamp S,
    3. Gillen JS, et al
    . Comparison of single voxel brain MRS at 3T and 7T using 32-channel head coils. Magn Reson Imaging 2015;33:1013–18 doi:10.1016/j.mri.2015.06.003 pmid:26117693
    CrossRefPubMed
  23. 23.↵
    1. Mekle R,
    2. Mlynárik V,
    3. Gambarota G, et al
    . MRS of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med 2009;61:1279–85 doi:10.1002/mrm.21961 pmid:19319893
    CrossRefPubMed
  24. 24.↵
    1. Younis S,
    2. Hougaard A,
    3. Christensen CE, et al
    . Feasibility of glutamate and GABA detection in pons and thalamus at 3T and 7T by proton magnetic resonance spectroscopy. Front Neurosci 2020;14:559314 doi:10.3389/fnins.2020.559314 pmid:33192247
    CrossRefPubMed
  25. 25.↵
    1. Li Y,
    2. Lafontaine M,
    3. Chang S, et al
    . Comparison between short and long echo time magnetic resonance spectroscopic imaging at 3T and 7T for evaluating brain metabolites in patients with glioma. ACS Chem Neurosci 2018;9:130–37 doi:10.1021/acschemneuro.7b00286 pmid:29035503
    CrossRefPubMed
  26. 26.↵
    1. Trattnig S,
    2. Springer E,
    3. Bogner W, et al
    . Key clinical benefits of neuroimaging at 7T. Neuroimage 2018;168:477–89 doi:10.1016/j.neuroimage.2016.11.031 pmid:27851995
    CrossRefPubMed
  27. 27.↵
    1. Emir UE,
    2. Larkin SJ,
    3. de Pennington N, et al
    . Noninvasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations. Cancer Res 2016;76:43–49 doi:10.1158/0008-5472.CAN-15-0934 pmid:26669865
    Abstract/FREE Full Text
  28. 28.↵
    1. Lupo JM,
    2. Li Y,
    3. Hess CP, et al
    . Advances in ultra-high field MRI for the clinical management of patients with brain tumors. Curr Opin Neurol 2011;24:605–15 doi:10.1097/WCO.0b013e32834cd495 pmid:22045220
    CrossRefPubMed
  29. 29.↵
    1. Wei RL,
    2. Wei XT
    . Advanced diagnosis of glioma by using emerging magnetic resonance sequences. Front Oncol 2021;11:694498 doi:10.3389/fonc.2021.694498 pmid:34422648
    CrossRefPubMed
  30. 30.↵
    1. Balchandani P,
    2. Naidich TP
    . Ultra-high-field MR neuroimaging. AJNR Am J Neuroradiol 2015;36:1204–15 doi:10.3174/ajnr.A4180 pmid:25523591
    Abstract/FREE Full Text
  31. 31.↵
    1. Li Y,
    2. Larson P,
    3. Chen AP, et al
    . Short-echo three-dimensional H-1 MR spectroscopic imaging of patients with glioma at 7 Tesla for characterization of differences in metabolite levels. J Magn Reson Imaging 2015;41:1332–41 doi:10.1002/jmri.24672 pmid:24935758
    CrossRefPubMed
  32. 32.↵
    1. Tkác I,
    2. Oz G,
    3. Adriany G, et al
    . In vivo 1H NMRS of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med 2009;62:868–79 doi:10.1002/mrm.22086 pmid:19591201
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Berrington A, et al
    . A comparison of 2-hydroxyglutarate detection at 3 and 7 T with long-TE semi-LASER. NMR Biomed 2018;31 doi:10.1002/nbm.3886 pmid:29315915
    CrossRefPubMed
  34. 34.↵
    1. Verma G,
    2. Mohan S,
    3. Nasrallah MP, et al
    . Non-invasive detection of 2-hydroxyglutarate in IDH-mutated gliomas using two-dimensional localized correlation spectroscopy (2D L-COSY) at 7 Tesla. J Transl Med 2016;14:274 doi:10.1186/s12967-016-1035-1 pmid:27659543
    CrossRefPubMed
  35. 35.↵
    1. Thomas MA,
    2. Hattori N,
    3. Umeda M, et al
    . Evaluation of two-dimensional L-COSY and JPRESS using a 3 T MRI scanner: from phantoms to human brain in vivo. NMR Biomed 2003;16:245–51 doi:10.1002/nbm.825 pmid:14648883
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Binesh N,
    2. Yue K,
    3. Fairbanks L, et al
    . Reproducibility of localized 2D correlated MR spectroscopy. Magn Reson Med 2002;48:942–48 doi:10.1002/mrm.10307 pmid:12465102
    CrossRefPubMed
  37. 37.↵
    1. Verma G,
    2. Hariharan H,
    3. Nagarajan R, et al
    . Implementation of two-dimensional L-COSY at 7 Tesla: an investigation of reproducibility in human brain. J Magn Reson Imaging 2014;40:1319–27 doi:10.1002/jmri.24510 pmid:24273136
    CrossRefPubMed
  38. 38.↵
    1. van Dijken BR,
    2. van Laar PJ,
    3. Holtman GA, et al
    . Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol 2017;27:4129–44 doi:10.1007/s00330-017-4789-9 pmid:28332014
    CrossRefPubMed
  39. 39.↵
    1. Kochalska K,
    2. Łazorczyk A,
    3. Pankowska A, et al
    . General technical remarks on (1)HMRS translational research in 7T. Pol J Radiol 2019;84:e190–97 doi:10.5114/pjr.2019.85147 pmid:31481990
    CrossRefPubMed
  40. 40.↵
    1. McKay J,
    2. Tkáč I
    . Quantitative in vivo neurochemical profiling in humans: where are we now? Int J Epidemiol 2016;45:1339–50 doi:10.1093/ije/dyw235 pmid:27794521
    CrossRefPubMed
  41. 41.↵
    1. Pan JW,
    2. Lo KM,
    3. Hetherington HP
    . Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 Tesla. Magn Reson Med 2012;68:1007–17 doi:10.1002/mrm.24122 pmid:22213108
    CrossRefPubMed
  42. 42.↵
    1. Juchem C,
    2. Nixon TW,
    3. McIntyre S, et al
    . Dynamic multi-coil shimming of the human brain at 7 T. J Magn Reson 2011;212:280–88 doi:10.1016/j.jmr.2011.07.005 pmid:21824794
    CrossRefPubMed
  43. 43.↵
    1. Esmaeili M,
    2. Stockmann J,
    3. Strasser B, et al
    . An integrated RF-receive/B(0)-shim array coil boosts performance of whole-brain MR spectroscopic imaging at 7 T. Sci Rep 2020;10:15029 doi:10.1038/s41598-020-71623-5 pmid:32929121
    CrossRefPubMed
  44. 44.↵
    1. Andronesi OC,
    2. Arrillaga-Romany IC,
    3. Ly KI, et al
    . Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat Commun 2018;9:1474 doi:10.1038/s41467-018-03905-6 pmid:29662077
    CrossRefPubMed
  45. 45.↵
    1. An Z,
    2. Tiwari V,
    3. Ganji SK, et al
    . Echo-planar spectroscopic imaging with dual-readout alternated gradients (DRAG-EPSI) at 7 T: application for 2-hydroxyglutarate imaging in glioma patients. Magn Reson Med 2018;79:1851–61 doi:10.1002/mrm.26884 pmid:28833542
    CrossRefPubMed
  46. 46.↵
    1. Ganji SK,
    2. An Z,
    3. Tiwari V, et al
    . In vivo detection of 2-hydroxyglutarate in brain tumors by optimized point-resolved spectroscopy (PRESS) at 7T. Magn Reson Med 2017;77:936–44 doi:10.1002/mrm.26190 pmid:26991680
    CrossRefPubMed
  47. 47.↵
    1. Shen X,
    2. Voets N,
    3. Larkin S, et al
    . A noninvasive comparison study between human gliomas with IDH1 and IDH2 mutations by MR spectroscopy. Metabolites 2019;9:35 doi:10.3390/metabo9020035 pmid:30791611
    CrossRefPubMed
  48. 48.↵
    1. Cohen AL,
    2. Holmen SL,
    3. Colman H
    . IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 2013;13:345 doi:10.1007/s11910-013-0345-4 pmid:23532369
    CrossRefPubMed
  49. 49.↵
    1. Sanson M,
    2. Marie Y,
    3. Paris S, et al
    . Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009;27:4150–54 doi:10.1200/JCO.2009.21.9832 pmid:19636000
    Abstract/FREE Full Text
  50. 50.↵
    1. Karpel-Massler G,
    2. Nguyen TT,
    3. Shang E, et al
    . Novel IDH1-targeted glioma therapies. CNS Drugs 2019;33:1155–66 doi:10.1007/s40263-019-00684-6 pmid:31768950
    CrossRefPubMed
  51. 51.↵
    1. Choi C,
    2. Ganji SK,
    3. DeBerardinis RJ, et al
    . 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012;18:624–29 doi:10.1038/nm.2682 pmid:22281806
    CrossRefPubMed
  52. 52.↵
    1. Choi C,
    2. Ganji S,
    3. Hulsey K, et al
    . A comparative study of short- and long-TE 1H MRS at 3T for in vivo detection of 2-hydroxyglutarate in brain tumors. NMR Biomed 2013;26:1242–50 doi:10.1002/nbm.2943 pmid:23592268
    CrossRefPubMed
  53. 53.↵
    1. SongTao Q,
    2. Lei Y,
    3. Si G, et al
    . IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci 2012;103:269–73 doi:10.1111/j.1349-7006.2011.02134.x pmid:22034964
    CrossRefPubMed
  54. 54.↵
    1. Buckner JC,
    2. Shaw EG,
    3. Pugh SL, et al
    . Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 2016;374:1344–55 doi:10.1056/NEJMoa1500925 pmid:27050206
    CrossRefPubMed
  55. 55.↵
    1. Kim H,
    2. Kim S,
    3. Lee HH, et al
    . In-vivo proton magnetic resonance spectroscopy of 2-hydroxyglutarate in isocitrate dehydrogenase-mutated gliomas: a technical review for neuroradiologists. Korean J Radiol 2016;17:620–32 doi:10.3348/kjr.2016.17.5.620 pmid:27587950
    CrossRefPubMed
  56. 56.↵
    1. Ross B,
    2. Gambhir S
    1. Shim H
    . Spectroscopic MRI for brain tumor imaging, molecular imaging. In: Ross B, Gambhir S, eds. Molecular Imaging. Elsevier; 2021:1077–90
  57. 57.↵
    1. Suh CH,
    2. Kim HS,
    3. Jung SC, et al
    . 2-Hydroxyglutarate MRS for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro Oncol 2018;20:1573–83 doi:10.1093/neuonc/noy113 pmid:30020513
    CrossRefPubMed
  58. 58.↵
    1. Andronesi OC,
    2. Kim GS,
    3. Gerstner E, et al
    . Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 2012;4:116ra4 doi:10.1126/scitranslmed.3002693 pmid:22238332
    Abstract/FREE Full Text
  59. 59.↵
    1. Chaumeil MM,
    2. Larson PE,
    3. Yoshihara HA, et al
    . Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat Commun 2013;4:2429 doi:10.1038/ncomms3429 pmid:24019001
    CrossRefPubMed
  60. 60.↵
    1. An Z,
    2. Tiwari V,
    3. Baxter J, et al
    . 3D high-resolution imaging of 2-hydroxyglutarate in glioma patients using DRAG-EPSI at 3T in vivo. Magn Reson Med 2019;81:795–802 doi:10.1002/mrm.27482 pmid:30277274
    CrossRefPubMed
  61. 61.↵
    1. Provencher SW
    . Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 2001;14:260–64 doi:10.1002/nbm.698 pmid:11410943
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Huang LE
    . Friend or foe-IDH1 mutations in glioma 10 years on. Carcinogenesis 2019;40:1299–1307 doi:10.1093/carcin/bgz134 pmid:31504231
    CrossRefPubMed
  63. 63.↵
    1. Wang HY,
    2. Tang K,
    3. Liang TY, et al
    . The comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomas. J Exp Clin Cancer Res 2016;35:86 doi:10.1186/s13046-016-0362-7 pmid:27245697
    CrossRefPubMed
  64. 64.↵
    1. Molenaar RJ,
    2. Maciejewski JP,
    3. Wilmink JW, et al
    . Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018;37:1949–60 doi:10.1038/s41388-017-0077-z pmid:29367755
    CrossRefPubMed
  65. 65.↵
    1. Han S,
    2. Liu Y,
    3. Cai SJ, et al
    . IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer 2020;122:1580–89 doi:10.1038/s41416-020-0814-x pmid:32291392
    CrossRefPubMed
  66. 66.↵
    1. Louis DN,
    2. Perry A,
    3. Wesseling P, et al
    . The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23:1231–51 doi:10.1093/neuonc/noab106 pmid:34185076
    CrossRefPubMed
  67. 67.↵
    1. Camelo-Piragua S,
    2. Jansen M,
    3. Ganguly A, et al
    . Mutant IDH1-specific immunohistochemistry distinguishes diffuse astrocytoma from astrocytosis. Acta Neuropathol 2010;119:509–11 doi:10.1007/s00401-009-0632-y pmid:20044756
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Takano S,
    2. Tian W,
    3. Matsuda M, et al
    . Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 2011;28:115–23 doi:10.1007/s10014-011-0023-7 pmid:21344322
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Takano S,
    2. Kato Y,
    3. Yamamoto T, et al
    . Immunohistochemical detection of IDH1 mutation, p53, and internexin as prognostic factors of glial tumors. J Neurooncol 2012;108:361–73 doi:10.1007/s11060-012-0837-0 pmid:22396072
    CrossRefPubMed
  70. 70.↵
    1. Hangel G,
    2. Cadrien C,
    3. Lazen P, et al
    . High-resolution metabolic imaging of high-grade gliomas using 7T-CRT-FID-MRSI. Neuroimage Clin 2020;28:102433 doi:10.1016/j.nicl.2020.102433 pmid:32977210
    CrossRefPubMed
  71. 71.↵
    1. Venkataramani V,
    2. Tanev DI,
    3. Strahle C, et al
    . Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 2019;573:532–38 doi:10.1038/s41586-019-1564-x pmid:31534219
    CrossRefPubMed
  72. 72.↵
    1. Ye ZC,
    2. Sontheimer H
    . Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 1999;59:4383–91 pmid:10485487
    Abstract/FREE Full Text
  73. 73.↵
    1. Hangel G,
    2. Jain S,
    3. Springer E, et al
    . High-resolution metabolic mapping of gliomas via patch-based super-resolution magnetic resonance spectroscopic imaging at 7T. Neuroimage 2019;191:587–95 doi:10.1016/j.neuroimage.2019.02.023 pmid:30772399
    CrossRefPubMed
  74. 74.↵
    1. Nanga RP,
    2. DeBrosse C,
    3. Kumar D, et al
    . Reproducibility of 2D GluCEST in healthy human volunteers at 7 T. Magn Reson Med 2018;80:2033–39 doi:10.1002/mrm.27362 pmid:29802635
    CrossRefPubMed
  75. 75.↵
    1. Libby CJ,
    2. Tran AN,
    3. Scott SE, et al
    . The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Biochim Biophys Acta Rev Cancer 2018;1869:175–88 doi:10.1016/j.bbcan.2018.01.004 pmid:29378228
    CrossRefPubMed
  76. 76.↵
    1. Tardito S,
    2. Oudin A,
    3. Ahmed SU, et al
    . Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 2015;17:1556–68 doi:10.1038/ncb3272 pmid:26595383
    CrossRefPubMed
  77. 77.↵
    1. Hingerl L,
    2. Strasser B,
    3. Moser P, et al
    . Clinical high-resolution 3D-MR spectroscopic imaging of the human brain at 7 T. Invest Radiol 2020;55:239–48 doi:10.1097/RLI.0000000000000626 pmid:31855587
    CrossRefPubMed
  78. 78.↵
    1. Altman BJ,
    2. Stine ZE,
    3. Dang CV
    . From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 2016;16:619–34 doi:10.1038/nrc.2016.71 pmid:27492215
    CrossRefPubMed
  79. 79.↵
    1. Koch K,
    2. Hartmann R,
    3. Tsiampali J, et al
    . A comparative pharmaco-metabolomic study of glutaminase inhibitors in glioma stem-like cells confirms biological effectiveness but reveals differences in target-specificity. Cell Death Discov 2020;6:20 doi:1[0.1038/s41420-020-0258-3 pmid:32337072
    CrossRefPubMed
  80. 80.↵
    1. Wang JB,
    2. Erickson JW,
    3. Fuji R, et al
    . Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010;18:207–19 doi:10.1016/j.ccr.2010.08.009 pmid:20832749
    CrossRefPubMedWeb of Science
  81. 81.↵
    1. Ekici S,
    2. Risk BB,
    3. Neill SG, et al
    . Characterization of dysregulated glutamine metabolism in human glioma tissue with 1H NMR. Sci Rep 2020;10:20435 doi:10.1038/s41598-020-76982-7 pmid:33235296
    CrossRefPubMed
  82. 82.↵
    1. Obara-Michlewska M,
    2. Szeliga M
    . Targeting glutamine addiction in gliomas. Cancers (Basel) 2020;12:310 doi:10.3390/cancers12020310 pmid:32013066
    CrossRefPubMed
  83. 83.↵
    1. Song M,
    2. Kim SH,
    3. Im CY, et al
    . Recent development of small molecule glutaminase inhibitors. Curr Top Med Chem 2018;18:432–43 doi:10.2174/1568026618666180525100830 pmid:29793408
    CrossRefPubMed
  84. 84.↵
    1. Wang Z,
    2. Liu F,
    3. Fan N, et al
    . Targeting glutaminolysis: new perspectives to understand cancer development and novel strategies for potential target therapies. Front Oncol 2020;10:589508 doi:10.3389/fonc.2020.589508 pmid:33194749
    CrossRefPubMed
  85. 85.↵
    1. Shen YA,
    2. Chen CL,
    3. Huang YH, et al
    . Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Curr Opin Chem Biol 2021;62:64–81 doi:10.1016/j.cbpa.2021.01.006 pmid:33721588
    CrossRefPubMed
  86. 86.↵
    1. Choi C,
    2. Ganji SK,
    3. DeBerardinis RJ, et al
    . Measurement of glycine in the human brain in vivo by 1H-MRS at 3 T: application in brain tumors. Magn Reson Med 2011;66:609–18 doi:10.1002/mrm.22857 pmid:21394775
    CrossRefPubMed
  87. 87.↵
    1. Kinoshita Y,
    2. Kajiwara H,
    3. Yokota A, et al
    . Proton magnetic resonance spectroscopy of astrocytic tumors: an in vitro study. Neurol Med Chir (Tokyo) 1993;33:350–59 doi:10.2176/nmc.33.350 pmid:7689180
    CrossRefPubMed
  88. 88.↵
    1. Righi V,
    2. Andronesi OC,
    3. Mintzopoulos D, et al
    . High-resolution magic angle spinning magnetic resonance spectroscopy detects glycine as a biomarker in brain tumors. Int J Oncol 2010;36:301–06 doi:10.3892/ijo_00000500 pmid:20043062
    CrossRefPubMedWeb of Science
  89. 89.↵
    1. Prisciandaro JJ,
    2. Schacht JP,
    3. Prescot AP, et al
    . Evidence for a unique association between fronto-cortical glycine levels and recent heavy drinking in treatment naive individuals with alcohol use disorder. Neurosci Lett 2019;706:207–10 doi:10.1016/j.neulet.2019.05.030 pmid:31108129
    CrossRefPubMed
  90. 90.↵
    1. Stence NV,
    2. Fenton LZ,
    3. Levek C, et al
    . Brain imaging in classic nonketotic hyperglycinemia: Quantitative analysis and relation to phenotype. J Inherit Metab Dis 2019;42:438–50 doi:10.1002/jimd.12072 pmid:30737808
    CrossRefPubMed
  91. 91.↵
    1. Tiwari V,
    2. Daoud EV,
    3. Hatanpaa KJ, et al
    . Glycine by MRS is an imaging biomarker of glioma aggressiveness. Neuro Oncol 2020;22:1018–29 doi:10.1093/neuonc/noaa034 pmid:32055850
    CrossRefPubMed
  92. 92.↵
    1. Seliger C,
    2. Schaertl J,
    3. Gerken M, et al
    . Use of statins or NSAIDs and survival of patients with high-grade glioma. PLoS One 2018;13:e0207858 doi:10.1371/journal.pone.0207858 pmid:30507932
    CrossRefPubMed
  93. 93.↵
    1. Avdievich NI,
    2. Pan JW,
    3. Baehring JM, et al
    . Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays. Magn Reson Med 2009;62:17–25 doi:10.1002/mrm.21970 pmid:19365851
    CrossRefPubMed
  94. 94.↵
    1. Strasser B,
    2. Chmelik M,
    3. Robinson SD, et al
    . Coil combination of multichannel MRSI data at 7 T: MUSICAL. NMR Biomed 2013;26:1796–805 doi:10.1002/nbm.3019 pmid:24038331
    CrossRefPubMed
  95. 95.↵
    1. Feldman RE,
    2. Balchandani P
    . A semiadiabatic spectral-spatial spectroscopic imaging (SASSI) sequence for improved high-field MR spectroscopic imaging. Magn Reson Med 2016;76:1071–82 doi:10.1002/mrm.26025 pmid:26519948
    CrossRefPubMed
  96. 96.↵
    1. Balchandani P,
    2. Pauly J,
    3. Spielman D
    . Designing adiabatic radio frequency pulses using the Shinnar-Le Roux algorithm. Magn Reson Med 2010;64:843–51 doi:10.1002/mrm.22473 pmid:20806378
    CrossRefPubMed
  97. 97.↵
    1. Li N,
    2. Li S,
    3. Shen J
    . High field in vivo 13C magnetic resonance spectroscopy of brain by random radiofrequency heteronuclear decoupling and data undersampling. Front Phys, 2017;5:26 doi:10.3389/fphy.2017.00026 pmid:29177139
    CrossRefPubMed
  98. 98.↵
    1. Wang Z,
    2. Lin JC,
    3. Mao W, et al
    . SAR and temperature: simulations and comparison to regulatory limits for MRI. J Magn Reson Imaging 2007;26:437–41 doi:10.1002/jmri.20977 pmid:17654736
    CrossRefPubMed
  99. 99.↵
    1. Ogg RJ,
    2. Kingsley PB,
    3. Taylor JS
    . WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMRS. J Magn Reson B 1994;104:1–10 doi:10.1006/jmrb.1994.1048 pmid:8025810
    CrossRefPubMedWeb of Science
  100. 100.↵
    1. Tkáč I,
    2. Gruetter R
    . Methodology of H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 2005;29:139–57 doi:10.1007/BF03166960 pmid:20179773
    CrossRefPubMed
  101. 101.↵
    1. Stockmann J,
    2. Witzel T,
    3. Arango N
    , et al. (2017) An integrated 32ch RF-shim array coil for improved B0 shimming of the brain at 7 Tesla. A. A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States. International Society for Magnetic Resonance in Medicine (ISMRM).
  102. 102.↵
    1. Verma G,
    2. Chawla S,
    3. Nagarajan R, et al
    . Non-uniformly weighted sampling for faster localized two-dimensional correlated spectroscopy of the brain in vivo. J Magn Reson 2017;277:104–12 doi:10.1016/j.jmr.2017.02.012 pmid:28262561
    CrossRefPubMed
  103. 103.↵
    1. Fu Y,
    2. Ijare O,
    3. Thomas G, et al
    . Implementation of wavelet encoding spectroscopic imaging technique on a 3 Tesla whole body MR scanner: in vitro results. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA. September 3–6, 2009:2688–91
  104. 104.↵
    1. Geethanath S,
    2. Baek HM,
    3. Ganji SK, et al
    . Compressive sensing could accelerate 1H MR metabolic imaging in the clinic. Radiology 2012;262:985–94 doi:10.1148/radiol.11111098 pmid:22357898
    CrossRefPubMed
  105. 105.↵
    1. Cao P,
    2. Shin PJ,
    3. Park I, et al
    . Accelerated high-bandwidth MR spectroscopic imaging using compressed sensing. Magn Reson Med 2016;76:369–79 doi:10.1002/mrm.26272 pmid:27228088
    CrossRefPubMed
  106. 106.↵
    1. Klauser A,
    2. Courvoisier S,
    3. Kasten J, et al
    . Fast high-resolution brain metabolite mapping on a clinical 3T MRI by accelerated 1 H-FID-MRSI and low-rank constrained reconstruction. Magn Reson Med 2019;81:2841–57 doi:10.1002/mrm.27623 pmid:30565314
    CrossRefPubMed
  107. 107.↵
    1. Bogner W,
    2. Otazo R,
    3. Henning A
    . Accelerated MR spectroscopic imaging-a review of current and emerging techniques. NMR Biomed 2021;34:e4314 doi:10.1002/nbm.4314 pmid:32399974
    CrossRefPubMed
  108. 108.↵
    1. Klauser A,
    2. Strasser B,
    3. Thapa B, et al
    . Achieving high-resolution whole-brain slab 1H-MRSI with compressed-sensing and low-rank reconstruction at 7 Tesla. J Magn Reson 2021;331:107048 doi:10.1016/j.jmr.2021.107048 pmid:34438355
    CrossRefPubMed
  109. 109.↵
    1. Verburg N,
    2. Koopman T,
    3. Yaqub MM, et al
    . Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro Oncol 2020;22:412–22 doi:10.1093/neuonc/noz180 pmid:31550353
    CrossRefPubMed
  110. 110.↵
    1. Verburg N,
    2. Hoefnagels FWA,
    3. Barkhof F, et al
    . Diagnostic accuracy of neuroimaging to delineate diffuse gliomas within the brain: a meta-analysis. AJNR Am J Neuroradiol 2017;38:1884–91 doi:10.3174/ajnr.A5368 pmid:28882867
    Abstract/FREE Full Text
  111. 111.↵
    1. Croteau D,
    2. Scarpace L,
    3. Hearshen D, et al
    . Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 2001;49:823–29 pmid:11564242
    CrossRefPubMedWeb of Science
  112. 112.↵
    1. van der Kolk AG,
    2. Hendrikse J,
    3. Zwanenburg JJM, et al
    . Clinical applications of 7 T MRI in the brain. Eur J Radiol 2013;82:708–18 doi:10.1016/j.ejrad.2011.07.007 pmid:21937178
    CrossRefPubMed
  113. 113.↵
    1. Cordova JS,
    2. Shu HK,
    3. Liang Z, et al
    . Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro Oncol 2016;18:1180–89 doi:10.1093/neuonc/now036 pmid:26984746
    CrossRefPubMed
  114. 114.↵
    1. Hangel G,
    2. Strasser B,
    3. Považan M, et al
    . Ultra-high resolution brain metabolite mapping at 7 T by short-TR Hadamard-encoded FID-MRSI. Neuroimage 2018;168:199–210 doi:10.1016/j.neuroimage.2016.10.043 pmid:27825954
    CrossRefPubMed
  115. 115.↵
    1. Moenninghoff C,
    2. Kraff O,
    3. Schlamann M, et al
    . Assessing a dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease) with 7T MR imaging. Korean J Radiol 2010;11:244–48 doi:10.3348/kjr.2010.11.2.244 pmid:20191074
    CrossRefPubMed
  116. 116.↵
    1. Mönninghoff C,
    2. Maderwald S,
    3. Theysohn J, et al
    . Imaging of brain metastases of bronchial carcinomas with 7 T MRI: initial results. Rofo 2010;182:764–72 doi:10.1055/s-0029-1245440 pmid:20544578
    CrossRefPubMed
  117. 117.↵
    1. Lupo JM,
    2. Banerjee S,
    3. Hammond KE, et al
    . GRAPPA-based susceptibility-weighted imaging of normal volunteers and patients with brain tumor at 7 T. Magn Reson Imaging 2009;27:480–88 doi:10.1016/j.mri.2008.08.003 pmid:18823730
    CrossRefPubMedWeb of Science
  118. 118.↵
    1. Tsien C,
    2. Galbán CJ,
    3. Chenevert TL, et al
    . Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 2010;28:2293–99 doi:10.1200/JCO.2009.25.3971 pmid:20368564
    Abstract/FREE Full Text
  119. 119.↵
    1. Leao DJ,
    2. Craig PG,
    3. Godoy LF, et al
    . Response Assessment in Neuro-Oncology criteria for gliomas: practical approach using conventional and advanced techniques. AJNR Am J Neuroradiol 2020;41:10–20 doi:10.3174/ajnr.A6358 pmid:31857322
    Abstract/FREE Full Text
  120. 120.↵
    1. Chukwueke UN,
    2. Wen PY
    . Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol 2019;8:Cns28 doi:10.2217/cns-2018-0007 pmid:30806082
    CrossRefPubMed
  121. 121.↵
    1. Brandsma D,
    2. Stalpers L,
    3. Taal W, et al
    . Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008;9:453–61 doi:10.1016/S1470-2045(08)70125-6 pmid:18452856
    CrossRefPubMedWeb of Science
  122. 122.↵
    1. Hygino da Cruz LC,
    2. Rodriguez I,
    3. Domingues RC Jr., et al
    . Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 2011;32:1978–85 doi:10.3174/ajnr.A2397 pmid:21393407
    Abstract/FREE Full Text
  123. 123.↵
    1. Chen X,
    2. Wei X,
    3. Zhang Z, et al
    . Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI. Clin Imaging 2015;39:775–80 doi:10.1016/j.clinimag.2015.04.003 pmid:25956436
    CrossRefPubMed
  124. 124.↵
    1. Nasseri M,
    2. Gahramanov S,
    3. Netto JP, et al
    . Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question. Neuro Oncol 2014;16:1146–54 doi:10.1093/neuonc/not328 pmid:24523362
    CrossRefPubMed
  125. 125.↵
    1. Zikou A,
    2. Sioka C,
    3. Alexiou GA, et al
    . Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging 2018;2018:6828396 doi:10.1155/2018/6828396 pmid:30627060
    CrossRefPubMed
  126. 126.↵
    1. Ma B,
    2. Blakeley JO,
    3. Hong X, et al
    . Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging 2016;44:456–62 doi:10.1002/jmri.25159 pmid:26788865
    CrossRefPubMed
  127. 127.↵
    1. Thust SC,
    2. van den Bent MJ,
    3. Smits M
    . Pseudoprogression of brain tumors. J Magn Reson Imaging 2018;48:571–89 doi:10.1002/jmri.26171 pmid:29734497
    CrossRefPubMed
  128. 128.↵
    1. Brandes AA,
    2. Tosoni A,
    3. Spagnolli F, et al
    . Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 2008;10:361–67 doi:10.1215/15228517-2008-008 pmid:18401015
    CrossRefPubMed
  129. 129.↵
    1. Gahramanov S,
    2. Muldoon LL,
    3. Varallyay CG, et al
    . Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. Radiology 2013;266:842–52 doi:10.1148/radiol.12111472 pmid:23204544
    CrossRefPubMedWeb of Science
  130. 130.↵
    1. Cha J,
    2. Kim ST,
    3. Kim H-J, et al
    . Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol 2014;35:1309–17 doi:10.3174/ajnr.A3876 pmid:24676005
    Abstract/FREE Full Text
  131. 131.↵
    1. Choi YJ,
    2. Kim HS,
    3. Jahng G-H, et al
    . Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 2013;54:448–54 doi:10.1177/0284185112474916 pmid:23592805
    CrossRefPubMed
  132. 132.↵
    1. Shim H,
    2. Holder CA,
    3. Olson JJ
    . Magnetic resonance spectroscopic imaging in the era of pseudoprogression and pseudoresponse in glioblastoma patient management. CNS Oncol 2013;2:393–96 doi:10.2217/cns.13.39 pmid:25054660
    CrossRefPubMed
  133. 133.↵
    1. Abbasi AW,
    2. Westerlaan HE,
    3. Holtman GA, et al
    . Incidence of tumour progression and pseudoprogression in high-grade gliomas: a systematic review and meta-analysis. Clin Neuroradiol 2018;28:401–11 doi:10.1007/s00062-017-0584-x pmid:28466127
    CrossRefPubMed
  134. 134.↵
    1. Andronesi OC,
    2. Esmaeili M,
    3. Borra RJ, et al
    . Early changes in glioblastoma metabolism measured by MR spectroscopic imaging during combination of anti-angiogenic cediranib and chemoradiation therapy are associated with survival. NPJ Precis Oncol 2017;1:120 doi:10.1038/s41698-017-0020-3 pmid:29202103
    CrossRefPubMed
  135. 135.↵
    1. Li M,
    2. Ren X,
    3. Dong G, et al
    . Distinguishing pseudoprogression from true early progression in isocitrate dehydrogenase wild-type glioblastoma by interrogating clinical, radiological, and molecular features. Front Oncol 2021;11:627325 doi:10.3389/fonc.2021.62732]5 pmid:33515701
    CrossRefPubMed
  136. 136.↵
    1. Le Fevre C,
    2. Constans JM,
    3. Chambrelant I, et al
    . Pseudoprogression versus true progression in glioblastoma patients: a multiapproach literature review, Part 2: radiological features and metric markers. Crit Rev Oncol Hematol 2021;159:103230 doi:10.1016/j.critrevonc.2021.103230 pmid:33515701
    CrossRefPubMed
  137. 137.↵
    1. Kamada K,
    2. Houkin K,
    3. Abe H, et al
    . Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurol Med Chir (Tokyo) 1997;37:250–56 doi:10.2176/nmc.37.250 pmid:9095625
    CrossRefPubMed
  138. 138.↵
    1. Fink J,
    2. Born D,
    3. Chamberlain MC
    . Pseudoprogression: relevance with respect to treatment of high-grade gliomas. Curr Treat Options Oncol 2011;12:240–52 doi:10.1007/s11864-011-0157-1 pmid:21594589
    CrossRefPubMed
  139. 139.↵
    1. Seeger A,
    2. Braun C,
    3. Skardelly M, et al
    . Comparison of three different MR perfusion techniques and MRS for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 2013;20:1557–65 doi:10.1016/j.acra.2013.09.003 pmid:24200483
    CrossRefPubMed
  140. 140.↵
    1. Elias AE,
    2. Carlos RC,
    3. Smith EA, et al
    . MRS using normalized and non-normalized metabolite ratios for differentiating recurrent brain tumor from radiation injury. Acad Radiol 2011;18:1101–08 doi:10.1016/j.acra.2011.05.006 pmid:21820634
    CrossRefPubMed
  141. 141.↵
    1. Smith EA,
    2. Carlos RC,
    3. Junck LR, et al
    . Developing a clinical decision model: MRS to differentiate between recurrent tumor and radiation change in patients with new contrast-enhancing lesions. AJR Am J Roentgenol 2009;192:W45–52 doi:10.2214/AJR.07.3934 pmid:19155380
    CrossRefPubMedWeb of Science
  142. 142.↵
    1. Weybright P,
    2. Sundgren PC,
    3. Maly P, et al
    . Differentiation between brain tumor recurrence and radiation injury using MRS. AJR Am J Roentgenol 2005;185:1471–76 doi:10.2214/AJR.04.0933 pmid:16304000
    CrossRefPubMedWeb of Science
  143. 143.↵
    1. Zeng QS,
    2. Li CF,
    3. Zhang K, et al
    . Multivoxel 3D proton MRS in the distinction of recurrent glioma from radiation injury. J Neurooncol 2007;84:63–69 doi:10.1007/s11060-007-9341-3 pmid:17619225
    CrossRefPubMed
  144. 144.↵
    1. Knudsen-Baas KM,
    2. Moen G,
    3. Fluge Ø, et al
    . Pseudoprogression in high-grade glioma. Acta Neurol Scand 2013;127:31–37 doi:10.1111/ane.12047 pmid:23190289
    CrossRefPubMed
  145. 145.↵
    1. Verma G,
    2. Chawla S,
    3. Mohan S, et al
    . Three-dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma. NMR Biomed 2019;32:e4042 doi:10.1002/nbm.4042 pmid:30556932
    CrossRefPubMed
  146. 146.↵
    1. Kong DS,
    2. Kim ST,
    3. Kim EH, et al
    . Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 2011;32:382–87 doi:10.3174/ajnr.A2286 pmid:21252041
    Abstract/FREE Full Text
  147. 147.↵
    1. Pohmann R,
    2. Speck O,
    3. Scheffler K
    . Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 Tesla using current receive coil arrays. Magn Reson Med 2016;75:801–09 doi:10.1002/mrm.25677 pmid:25820458
    CrossRefPubMed
  148. 148.↵
    1. Wiggins GC,
    2. Potthast A,
    3. Triantafyllou C, et al
    . Eight-channel phased array coil and detunable TEM volume coil for 7 T brain imaging. Magn Reson Med 2005;54:235–40 doi:10.1002/mrm.20547 pmid:15968650
    CrossRefPubMedWeb of Science
  149. 149.↵
    1. Oz G,
    2. Deelchand DK,
    3. Wijen JP, et al
    . Advanced single voxel 1H magnetic resonance spectroscopy techniques in humans: experts’ consensus recommendations. NMR Biomed 2020;e4236 doi:10.1002/nbm.4236 pmid:31922301
    CrossRefPubMed
  150. 150.↵
    1. Tkac I,
    2. Oz G,
    3. Gruetter R
    . Comparison of metabolite quantification in the human brain at 4 and 7 Tesla. In: Proceedings of the Scientific Meeting and Exhibition of the International Society for Magnetic Imaging in Medicine, Miami Beach, Florida. May 7–13, 2005:2458
  151. 151.↵
    1. Su C,
    2. Liu C,
    3. Zhao L, et al
    . Amide proton transfer imaging allows detection of glioma grades and tumor proliferation: comparison with Ki-67 expression and proton MR spectroscopy imaging. AJNR Am J Neuroradiol 2017;38:1702–19 doi:10.3174/ajnr.A5301 pmid:28729292
    Abstract/FREE Full Text
  152. 152.↵
    1. Kim JH,
    2. Chang KH,
    3. Na DG, et al
    . 3T 1H-MRS in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. AJNR Am J Neuroradiol 2006;27:1412–18 pmid:16908549
    PubMedWeb of Science
  153. 153.↵
    1. Fudaba H,
    2. Shimomura T,
    3. Abe T, et al
    . Comparison of multiple parameters obtained on 3T pulsed arterial spin-labeling, diffusion tensor imaging, and MRS and the Ki-67 labeling index in evaluating glioma grading. AJNR Am J Neuroradiol 2014;35:2091–98 doi:10.3174/ajnr.A4018 pmid:24994829
    Abstract/FREE Full Text
  154. 154.↵
    1. Vamvakas A,
    2. Williams SC,
    3. Theodorou K, et al
    . Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Phys Med 2019;60:188–98 doi:10.1016/j.ejmp.2019.03.014 pmid:30910431
    CrossRefPubMed
  155. 155.↵
    1. Senft C,
    2. Hattingen E,
    3. Pilatus U, et al
    . Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: comparison of maximum and mean choline values. Neurosurgery 2009;65:908–13; discussion 913 doi:10.1227/01.NEU.0000356982.82378.BA pmid:19834403
    CrossRefPubMedWeb of Science
  156. 156.↵
    1. Sakata A,
    2. Fushimi Y,
    3. Okada T, et al
    . Diagnostic performance between contrast enhancement, proton MRS, and amide proton transfer imaging in patients with brain tumors. J Magn Reson Imaging 2017;46:732–39 doi:10.1002/jmri.25597 pmid:28252822
    CrossRefPubMed
  157. 157.↵
    1. Bradac O,
    2. Vrana J,
    3. Jiru F, et al
    . Recognition of anaplastic foci within low-grade gliomas using MRS. Br J Neurosurg 2014;28:631–36 doi:10.3109/02688697.2013.872229 pmid:24377726
    CrossRefPubMed
  158. 158.↵
    1. Chung C,
    2. Metser U,
    3. Menard C
    . Advances in magnetic resonance imaging and positron emission tomography imaging for grading and molecular characterization of glioma. Semin Radiat Oncol 2015;25:164–71 doi:10.1016/j.semradonc.2015.02.002 pmid:26050586
    CrossRefPubMed
  159. 159.↵
    1. Delikatny EJ,
    2. Chawla S,
    3. Leung D-J, et al
    . MR-visible lipids and the tumor microenvironment. NMR Biomed 2011;24:592–611 doi:10.1002/nbm.1661 pmid:21538631
    CrossRefPubMedWeb of Science
  160. 160.↵
    1. Feng DX,
    2. McCauley JP,
    3. Morgan–Curtis FK, et al
    . Evaluation of 39 medical implants at 7.0 T. Br J Radiol 2015;88:20150633 doi:10.1259/bjr.20150633 pmid:26481696
    CrossRefPubMed
  161. 161.↵
    1. Kraff O,
    2. Wrede KH,
    3. Schoemberg T, et al
    . MR safety assessment of potential RF heating from cranial fixation plates at 7 T. Med Phys 2013;40:042302 doi:10.1118/1.4795347 pmid:23556915
    CrossRefPubMed
  162. 162.↵
    1. Chen B,
    2. Schoemberg T,
    3. Kraff O, et al
    . Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study. MAGMA 2016;29:389–98 doi:10.1007/s10334-016-0548-1 pmid:27026243
    CrossRefPubMed
  163. 163.↵
    1. Kraff O,
    2. Quick HH
    . 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017;46:1573–89 doi:10.1002/jmri.25723 pmid:28370675
    CrossRefPubMed
  164. 164.↵
    1. Okada T,
    2. Akasaka T,
    3. Thuy DH, et al
    . Safety for human MR scanners at 7T. Magn Reson Med Sci 2021 Aug 6 [Epub ahead of print] doi:10.2463/mrms.rev.2021-0063 pmid:34373430
    CrossRefPubMed
  165. 165.↵
    1. Fagan AJ,
    2. Bitz AK,
    3. Björkman-Burtscher IM, et al
    ; ISMRM Safety Committee. 7T MR safety. J Magn Reson Imaging 2021;53:333–46 doi:10.1002/jmri.27319 pmid:32830900
    CrossRefPubMed
  166. 166.↵
    1. Moser E,
    2. Stahlberg F,
    3. Ladd ME, et al
    . 7-T MR: from research to clinical applications? NMR Biomed 2012;25:695–716 doi:10.1002/nbm.1794 pmid:22102481
    CrossRefPubMed
  167. 167.↵
    1. Mikkelsen M,
    2. Rimbault DL,
    3. Barker PB, et al
    . Big GABA II: water-referenced edited MRS at 25 research sites. Neuroimage 2019;191:537–48 doi:10.1016/j.neuroimage.2019.02.059 pmid:30840905
    CrossRefPubMed
  168. 168.↵
    1. Near J,
    2. Harris AD,
    3. Juchem C, et al
    . Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts’ consensus recommendations. NMR Biomed 2021;34:e4257 doi:10.1002/nbm.4257]
    CrossRefPubMed
  169. 169.↵
    1. Branzoli F,
    2. Di Stefano AL,
    3. Capelle L, et al
    . Highly specific determination of IDH status using edited in vivo magnetic resonance spectroscopy. Neuro Oncol 2018;20:907–16 doi:10.1093/neuonc/nox214 pmid:29126125
    CrossRefPubMed
  170. 170.↵
    1. Vareth M,
    2. Lupo J,
    3. Larson P, et al
    . A comparison of coil combination strategies in 3D multi-channel MRSI reconstruction for patients with brain tumors. NMR Biomed 2018;31:e3929 doi:10.1002/nbm.3929 pmid:30168205
    CrossRefPubMed
  171. 171.↵
    1. Neal A,
    2. Moffat BA,
    3. Stein JM, et al
    . Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. Neuroimage Clin 2019;22:101694 doi:10.1016/j.nicl.2019.101694 pmid:30822716
    CrossRefPubMed
  172. 172.↵
    1. Kudo H,
    2. Mio T,
    3. Kokunai T, et al
    . Quantitative analysis of glutathione in human brain tumors. J Neurosurg 1990;72:610–15 doi:10.3171/jns.1990.72.4.0610 pmid:1690792
    CrossRefPubMedWeb of Science
  173. 173.↵
    1. Rocha CR,
    2. Garcia CC,
    3. Vieira DB, et al
    . Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo. Cell Death Dis 2014;5:e1505 doi:10.1038/cddis.2014.465 pmid:25356874
    CrossRefPubMed
  174. 174.↵
    1. Prisciandaro JJ,
    2. Mikkelsen M,
    3. Saleh MG, et al
    . An evaluation of the reproducibility of (1)H-MRS GABA and GSH levels acquired in healthy volunteers with J-difference editing sequences at varying echo times. Magn Reson Imaging 2020;65:109–13 doi:10.1016/j.mri.2019.10.004 pmid:31707293
    CrossRefPubMed
  175. 175.↵
    1. Bottino F,
    2. Lucignani M,
    3. Napolitano A, et al
    . In vivo brain GSH: MRS methods and clinical applications. Antioxidants (Basel) 2021;10:1407 doi:10.3390/antiox10091407 pmid:34573039
    CrossRefPubMed
  176. 176.↵
    1. Branco M,
    2. Linhares P,
    3. Carvalho B, et al
    . Serum lactate levels are associated with glioma malignancy grade. Clin Neurol Neurosurg 2019;186:105546 doi:10.1016/j.clineuro.2019.105546 pmid:31605893
    CrossRefPubMed
  177. 177.↵
    1. Reuss AM,
    2. Gross D,
    3. Buchfelder M, et al
    . The acidic brain-glycolytic switch in the microenvironment of malignant glioma. Int J Mol Sci 2021;22:5518 doi:10.3390/ijms22115518 pmid:34073734
    CrossRefPubMed
  178. 178.↵
    1. Daniele S,
    2. Giacomelli C,
    3. Zappelli E, et al
    . Lactate dehydrogenase: A inhibition induces human glioblastoma multiforme stem cell differentiation and death. Sci Rep 2015;5:15556 doi:10.1038/srep15556 pmid:26494310
    CrossRefPubMed
  179. 179.↵
    1. de la Cruz-López KG,
    2. Castro-Muñoz LJ,
    3. Reyes-Hernández DO, et al
    . Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 2019;9:1143 doi:10.3389/fonc.2019.01143 pmid:31737570
    CrossRefPubMed
  180. 180.↵
    1. Bulik M,
    2. Jancalek R,
    3. Vanicek J, et al
    . Potential of MRS for assessment of glioma grading. Clin Neurol Neurosurg 2013;115:146–53 doi:10.1016/j.clineuro.2012.11.002 pmid:23237636
    CrossRefPubMed
  181. 181.↵
    1. Hérigault G,
    2. Zoula S.,
    3. Rémy C, et al
    . Multi-spin-echo J-resolved spectroscopic imaging without water suppression: application to a rat glioma at 7 T. MAGMA2004;17:140–48 doi:10.1007/s10334-004-0060-x pmid:15517469
    CrossRefPubMed
  182. 182.↵
    1. Gonen OM,
    2. Moffat BA,
    3. Kwan P, et al
    . Reproducibility of glutamate, glutathione, and GABA measurements in vivo by single-voxel STEAM magnetic resonance spectroscopy at 7-Tesla in healthy individuals. Front Neurosci 2020;14:566643 doi:10.3389/fnins.2020.566643 pmid:33041761
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 43 (10)
American Journal of Neuroradiology
Vol. 43, Issue 10
1 Oct 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Application of 7T MRS to High-Grade Gliomas
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L. McCarthy, G. Verma, G. Hangel, A. Neal, B.A. Moffat, J.P. Stockmann, O.C. Andronesi, P. Balchandani, C.G. Hadjipanayis
Application of 7T MRS to High-Grade Gliomas
American Journal of Neuroradiology Oct 2022, 43 (10) 1378-1395; DOI: 10.3174/ajnr.A7502

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
7T MRS in High-Grade Gliomas
L. McCarthy, G. Verma, G. Hangel, A. Neal, B.A. Moffat, J.P. Stockmann, O.C. Andronesi, P. Balchandani, C.G. Hadjipanayis
American Journal of Neuroradiology Oct 2022, 43 (10) 1378-1395; DOI: 10.3174/ajnr.A7502
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Improved Detection of Target Metabolites in Brain Tumors with Intermediate TE, High SNR, and High Bandwidth Spin-Echo Sequence at 5T
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire