Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticlePediatric Neuroimaging
Open Access

Quantitative Susceptibility Mapping of Venous Vessels in Neonates with Perinatal Asphyxia

A.M. Weber, Y. Zhang, C. Kames and A. Rauscher
American Journal of Neuroradiology July 2021, 42 (7) 1327-1333; DOI: https://doi.org/10.3174/ajnr.A7086
A.M. Weber
aFrom the Division of Neurology (A.M.W., A.R.)
bDepartment of Pediatrics and University of British Columbia MRI Research Centre (A.M.W., C.K., A.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.M. Weber
Y. Zhang
eDepartment of Radiology (Y.Z.), Children’s Hospital of Chongqing Medical University, Chongqing, China
fMinistry of Education Key Laboratory of Child Development and Disorders (Y.Z.), Chongqing, China
gKey Laboratory of Pediatrics in Chongqing (Y.Z.), Chongqing, China
hChongqing International Science and Technology Cooperation Center for Child Development and Disorders (Y.Z.), Chongqing, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Zhang
C. Kames
bDepartment of Pediatrics and University of British Columbia MRI Research Centre (A.M.W., C.K., A.R.)
cDepartment of Physics and Astronomy (C.K., A.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Kames
A. Rauscher
aFrom the Division of Neurology (A.M.W., A.R.)
bDepartment of Pediatrics and University of British Columbia MRI Research Centre (A.M.W., C.K., A.R.)
cDepartment of Physics and Astronomy (C.K., A.R.)
dDepartment of Radiology (A.R.), University of British Columbia, Vancouver, British Columbia, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Rauscher
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ferriero DM
    . Neonatal brain injury. N Engl J Med 2004;351:1985–95 doi:10.1056/NEJMra041996 pmid:15525724
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Kurinczuk JJ,
    2. White-Koning M,
    3. Badawi N
    . Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2010;86:329–38 doi:10.1016/j.earlhumdev.2010.05.010 pmid:20554402
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Bryce J,
    2. Boschi-Pinto C,
    3. Shibuya K, et al
    . WHO estimates of the causes of death in children. Lancet 2005;365:1147–52 doi:10.1016/S0140-6736(05)71877-8 pmid:15794969
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Barkovich AJ,
    2. Hajnal BL,
    3. Vigneron D, et al
    . Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol 1998;19:143–49 pmid:9432172
    Abstract
  5. 5.↵
    1. Sarnat HB,
    2. Sarnat MS
    . Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Arch Neurol 1976;33:696–705 doi:10.1001/archneur.1976.00500100030012 pmid:987769
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Chalak LF,
    2. Rollins N,
    3. Morriss MC, et al
    . Perinatal acidosis and hypoxic-ischemic encephalopathy in preterm infants of 33 to 35 weeks’ gestation. J Pediatr 2012;160:388–94 doi:10.1016/j.jpeds.2011.09.001 pmid:22033298
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Logitharajah P,
    2. Rutherford MA,
    3. Cowan FM
    . Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging, and outcome. Pediatr Res 2009;66:222–29 doi:10.1203/PDR.0b013e3181a9ef34 pmid:19390490
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Laptook AR
    . Birth asphyxia and hypoxic-ischemic brain injury in the preterm infant. Clin Perinatol 2016;43:529–45 doi:10.1016/j.clp.2016.04.010 pmid:27524452
    CrossRefPubMed
  9. 9.↵
    1. Salhab WA,
    2. Perlman JM
    . Severe fetal acidemia and subsequent neonatal encephalopathy in the larger premature infant. Pediatr Neurol 2005;32:25–29 doi:10.1016/j.pediatrneurol.2004.06.016 pmid:15607600
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Rana L,
    2. Sood D,
    3. Chauhan R, et al
    . MR imaging of hypoxic ischemic encephalopathy: distribution patterns and ADC value correlations. Eur J Radiol Open 2018;5:215–20 doi:10.1016/j.ejro.2018.08.001 pmid:30480058
    CrossRefPubMed
  11. 11.↵
    1. Azzopardi D,
    2. Edwards AD
    . Magnetic resonance biomarkers of neuroprotective effects in infants with hypoxic ischemic encephalopathy. Semin Fetal Neonatal Med 2010;15:261–69 doi:10.1016/j.siny.2010.03.001 pmid:20359970
    CrossRefPubMed
  12. 12.↵
    1. Thayyil S,
    2. Chandrasekaran M,
    3. Taylor A, et al
    . Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 2010;125:e382-395 doi:10.1542/peds.2009-1046 pmid:20083516
    Abstract/FREE Full Text
  13. 13.↵
    1. Skappak C,
    2. Regush S,
    3. Cheung P-Y, et al
    . Identifying hypoxia in a newborn piglet model using urinary NMR metabolomic profiling. PLoS ONE 2013;8:e65035 doi:10.1371/journal.pone.0065035 pmid:23741447
    CrossRefPubMed
  14. 14.↵
    1. Cainelli E,
    2. Trevisanuto D,
    3. Cavallin F, et al
    . Evoked potentials predict psychomotor development in neonates with normal MRI after hypothermia for hypoxic-ischemic encephalopathy. Clin Neurophysiol 2018;129:1300–06 doi:10.1016/j.clinph.2018.03.043 pmid:29689487
    CrossRefPubMed
  15. 15.↵
    1. Pryds O,
    2. Greisen G,
    3. Lou H, et al
    . Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr 1990;117:119–25 doi:10.1016/S0022-3476(05)72459-8 pmid:2115079
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Lassen NA
    . The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet 1966;2:1113–15 doi:10.1016/S0140-6736(66)92199-4 pmid:4162534
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Skov L,
    2. Pryds O,
    3. Greisen G, et al
    . Estimation of cerebral venous saturation in newborn infants by near infrared spectroscopy. Pediatr Res 1993;33:52–55doi:10.1203/00006450-199301000-00011 pmid:8433861
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Rescoe E,
    2. Tang X,
    3. Perry DA, et al
    . Cerebral near-infrared spectroscopy insensitively detects low cerebral venous oxygen saturations after stage 1 palliation. J Thorac Cardiovasc Surg 2017;154:1056–62 doi:10.1016/j.jtcvs.2017.03.154 pmid:28599970
    CrossRefPubMed
  19. 19.↵
    1. Shmueli K,
    2. de Zwart JA,
    3. van Gelderen P, et al
    . Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 2009;62:1510–22 doi:10.1002/mrm.22135 pmid:19859937
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Deistung A,
    2. Schweser F,
    3. Reichenbach JR
    . Overview of quantitative susceptibility mapping. NMR Biomed 2017;30:e3569 doi:10.1002/nbm.3569 pmid:27434134
    CrossRefPubMed
  21. 21.↵
    1. Haacke EM,
    2. Xu Y,
    3. Cheng Y-CN, et al
    . Susceptibility-weighted imaging (SWI). Magn Reson Med 2004;52:612–18 doi:10.1002/mrm.20198 pmid:15334582
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Haacke EM,
    2. Tang J,
    3. Neelavalli J, et al
    . Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010;32:663–76 doi:10.1002/jmri.22276 pmid:20815065
    CrossRefPubMed
  23. 23.↵
    1. Tang J,
    2. Liu S,
    3. Neelavalli J, et al
    . Improving susceptibility mapping using a threshold-based K-space/image domain iterative reconstruction approach. Magn Reson Med 2013;69:1396–1407 doi:10.1002/mrm.24384 pmid:22736331
    CrossRefPubMed
  24. 24.↵
    1. Doshi H,
    2. Wiseman N,
    3. Liu J, et al
    . Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. PLoS One 2015;10:e0118061 doi:10.1371/journal.pone.0118061 pmid:25659079
    CrossRefPubMed
  25. 25.↵
    1. Chai C,
    2. Guo R,
    3. Zuo C, et al
    . Decreased susceptibility of major veins in mild traumatic brain injury is correlated with post-concussive symptoms: a quantitative susceptibility mapping study. Neuroimage Clin 2017;15:625–32 doi:10.1016/j.nicl.2017.06.008 pmid:28664033
    CrossRefPubMed
  26. 26.↵
    1. Chai C,
    2. Wang H,
    3. Chu Z, et al
    . Reduced regional cerebral venous oxygen saturation is a risk factor for the cognitive impairment in hemodialysis patients: a quantitative susceptibility mapping study. Brain Imaging Behav 2020;14:1339–49 doi:10.1007/s11682-018-9999-5 pmid:30511117
    CrossRefPubMed
  27. 27.↵
    1. Antonucci R,
    2. Porcella A,
    3. Pilloni MD
    . Perinatal asphyxia in the term newborn. Journal of Pediatric and Neonatal Individualized Medicine 2014;3:e030269 doi:10.7363/030269
    CrossRef
  28. 28.↵
    1. Gopagondanahalli KR,
    2. Li J,
    3. Fahey MC, et al
    . Preterm hypoxic-ischemic encephalopathy. Front Pediatr 2016;4:114 doi:10.3389/fped.2016.00114 pmid:27812521
    CrossRefPubMed
  29. 29.↵
    1. Sie LT,
    2. van der Knaap MS,
    3. Oosting J, et al
    . MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics 2000;31:128–36 doi:10.1055/s-2000-7496 pmid:10963099
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Barkovich AJ,
    2. Sargent SK
    . Profound asphyxia in the premature infant: imaging findings. AJNR Am J Neuroradiol 1995;16:1837–46 pmid:8693984
    Abstract
  31. 31.↵
    1. Denk C,
    2. Rauscher A
    . Susceptibility weighted imaging with multiple echoes. J Magn Reson Imaging 2010;31:185–91 doi:10.1002/jmri.21995 pmid:20027586
    CrossRefPubMed
  32. 32.↵
    1. Schofield MA,
    2. Zhu Y
    . Fast phase unwrapping algorithm for interferometric applications. Opt Lett 2003;28:1194–96 doi:10.1364/ol.28.001194 pmid:12885018
    CrossRefPubMed
  33. 33.↵
    1. Li W,
    2. Wu B,
    3. Liu C
    . Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 2011;55:1645–56 doi:10.1016/j.neuroimage.2010.11.088 pmid:21224002
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Kames C,
    2. Wiggermann V,
    3. Rauscher A
    . Rapid two-step dipole inversion for susceptibility mapping with sparsity priors. Neuroimage 2018;167:276–83 doi:10.1016/j.neuroimage.2017.11.018 pmid:29138089
    CrossRefPubMed
  35. 35.↵
    1. Leenders KL,
    2. Perani D,
    3. Lammertsma AA, et al
    . Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age. Brain 1990;113:27–47 doi:10.1093/brain/113.1.27 pmid:2302536
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Doucette J,
    2. Wei L,
    3. Hernández-Torres E, et al
    . Rapid solution of the Bloch-Torrey equation in anisotropic tissue: application to dynamic susceptibility contrast MRI of cerebral white matter. Neuroimage 2019;185:198–207 doi:10.1016/j.neuroimage.2018.10.035 pmid:30332614
    CrossRefPubMed
  37. 37.↵
    1. Sedlacik J,
    2. Rauscher A,
    3. Reichenbach JR
    . Obtaining blood oxygenation levels from MR signal behavior in the presence of single venous vessels. Magn Reson Med 2007;58:1035–44 doi:10.1002/mrm.21283 pmid:17969121
    CrossRefPubMed
  38. 38.↵
    1. Portnoy S,
    2. Milligan N,
    3. Seed M, et al
    . Human umbilical cord blood relaxation times and susceptibility at 3 T: human umbilical cord blood relaxation times and susceptibility at 3 T. Magn Reson Med 2018;79:3194–3206 doi:10.1002/mrm.26978 pmid:29067745
    CrossRefPubMed
  39. 39.↵
    1. Ferrari M,
    2. Mottola L,
    3. Quaresima V
    . Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 2004;29:463–87 doi:10.1139/h04-031 pmid:15328595
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Davies DJ,
    2. Su Z,
    3. Clancy MT, et al
    . Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: a review. J Neurotrauma 2015;32:933–41 doi:10.1089/neu.2014.3748 pmid:25603012
    CrossRefPubMed
  41. 41.↵
    1. Murkin JM,
    2. Arango M
    . Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaes 2009;103(Suppl 1):i3–13 doi:10.1093/bja/aep299 pmid:20007987
    CrossRefPubMed
  42. 42.↵
    1. Fan AP,
    2. Bilgic B,
    3. Gagnon L, et al
    . Quantitative oxygenation venography from MRI phase. Magn Reson Med 2014;72:149–59 doi:10.1002/mrm.24918 pmid:24006229
    CrossRefPubMed
  43. 43.↵
    1. Liu S,
    2. Buch S,
    3. Chen Y, et al
    . Susceptibility-weighted imaging: current status and future directions. NMR Biomed 2017;30:10.1002/nbm.3552 doi:10.1002/nbm.3552 pmid:27192086
    CrossRefPubMed
  44. 44.↵
    1. Yadav BK,
    2. Buch S,
    3. Krishnamurthy U, et al
    . Quantitative susceptibility mapping in the human fetus to measure blood oxygenation in the superior sagittal sinus. Eur Radiol 2019;29:2017–26 doi:10.1007/s00330-018-5735-1 pmid:30276673
    CrossRefPubMed
  45. 45.↵
    1. Jain V,
    2. Buckley EM,
    3. Licht DJ, et al
    . Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics. J Cereb Blood Flow Metab 2014;34:380–88 doi:10.1038/jcbfm.2013.214 pmid:24326385
    CrossRefPubMed
  46. 46.↵
    1. Yadav BK,
    2. Krishnamurthy U,
    3. Buch S, et al
    . Imaging putative foetal cerebral blood oxygenation using susceptibility weighted imaging (SWI). Eur Radiol 2018;28:1884–90 doi:10.1007/s00330-017-5160-x pmid:29247352
    CrossRefPubMed
  47. 47.↵
    1. Neelavalli J,
    2. Jella PK,
    3. Krishnamurthy U, et al
    . Measuring venous blood oxygenation in fetal brain using susceptibility-weighted imaging. J Magn Reson Imaging 2014;39:998–1006 doi:10.1002/jmri.24245 pmid:24783243
    CrossRefPubMed
  48. 48.↵
    1. Shetty AN,
    2. Lucke AM,
    3. Liu P, et al
    . Cerebral oxygen metabolism during and after therapeutic hypothermia in neonatal hypoxic-ischemic encephalopathy: a feasibility study using magnetic resonance imaging. Pediatr Radiol 2019;49:224–33 doi:10.1007/s00247-018-4283-9 pmid:30402807
    CrossRefPubMed
  49. 49.↵
    1. Liu P,
    2. Huang H,
    3. Rollins N, et al
    . Quantitative assessment of global cerebral metabolic rate of oxygen (CMRO2) in neonates using MRI. NMR Biomed 2014;27:332–40 doi:10.1002/nbm.3067 pmid:24399806
    CrossRefPubMed
  50. 50.↵
    1. Wang Y,
    2. Spincemaille P,
    3. Liu Z, et al
    . Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care. J Magn Reson Imaging 2017;46:951–71 doi:10.1002/jmri.25693 pmid:28295954
    CrossRefPubMed
  51. 51.↵
    1. Zhang Y,
    2. Rauscher A,
    3. Kames C, et al
    . Quantitative analysis of punctate white matter lesions in neonates using quantitative susceptibility mapping and R2* relaxation. AJNR Am J Neuroradiol 2019;40:1221–26 doi:10.3174/ajnr.A6114 pmid:31221632
    Abstract/FREE Full Text
  52. 52.↵
    1. Bosemani T,
    2. Poretti A,
    3. Huisman TA
    . Susceptibility-weighted imaging in pediatric neuroimaging. J Magn Reson Imaging 2014;40:530–44 doi:10.1002/jmri.24410 pmid:24925729
    CrossRefPubMed
  53. 53.↵
    1. Tortora D,
    2. Severino M,
    3. Malova M, et al
    . Variability of cerebral deep venous system in preterm and term neonates evaluated on MR SWI venography. AJNR Am J Neuroradiol 2016;37:2144–49 doi:10.3174/ajnr.A4877 pmid:27469213
    Abstract/FREE Full Text
  54. 54.↵
    1. Albayram MS,
    2. Smith G,
    3. Tufan F, et al
    . Frequency, extent, and correlates of superficial siderosis and ependymal siderosis in premature infants with germinal matrix hemorrhage: an SWI study. AJNR Am J Neuroradiol 2020;41:331–37 doi:10.3174/ajnr.A6371 pmid:31919140
    Abstract/FREE Full Text
  55. 55.↵
    1. Dolui S,
    2. Wang Z,
    3. Wang DJ, et al
    . Comparison of non-invasive MRI measurements of cerebral blood flow in a large multisite cohort. J Cereb Blood Flow Metab 2016;36:1244–56 doi:10.1177/0271678X16646124 pmid:27142868
    CrossRefPubMed
  56. 56.↵
    1. Jopling J,
    2. Henry E,
    3. Wiedmeier SE, et al
    . Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics 2009;123:e333–37 doi:10.1542/peds.2008-2654 pmid:19171584
    Abstract/FREE Full Text
  57. 57.
    1. van der Hoeven MA,
    2. Maertzdorf WJ,
    3. Blanco CE
    . Continuous central venous oxygen saturation (SCvO2) measurement using a fiber optic catheter in newborn infants. Arch Dis Child Fetal Neonatal Ed 1996;74:F177–81 doi:10.1136/fn.74.3.f177 pmid:8777680
    Abstract/FREE Full Text
  58. 58.
    1. Buchvald FF,
    2. Kesje K,
    3. Greisen G
    . Measurement of cerebral oxyhaemoglobin saturation and jugular blood flow in term healthy newborn infants by near-infrared spectroscopy and jugular venous occlusion. Biol Neonate 1999;75:97–103 doi:10.1159/000014084 pmid:9852360
    CrossRefPubMedWeb of Science
  59. 59.
    1. Wintermark P,
    2. Hansen A,
    3. Warfield SK, et al
    . Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neuroimage 2014;85:287–93 doi:10.1016/j.neuroimage.2013.04.072 pmid:23631990
    CrossRefPubMed
  60. 60.
    1. De Vis JB,
    2. Petersen ET,
    3. Alderliesten T, et al
    . Non-invasive MRI measurements of venous oxygenation, oxygen extraction fraction and oxygen consumption in neonates. Neuroimage 2014;95:185–92 doi:10.1016/j.neuroimage.2014.03.060 pmid:24685437
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (7)
American Journal of Neuroradiology
Vol. 42, Issue 7
1 Jul 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Susceptibility Mapping of Venous Vessels in Neonates with Perinatal Asphyxia
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A.M. Weber, Y. Zhang, C. Kames, A. Rauscher
Quantitative Susceptibility Mapping of Venous Vessels in Neonates with Perinatal Asphyxia
American Journal of Neuroradiology Jul 2021, 42 (7) 1327-1333; DOI: 10.3174/ajnr.A7086

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Quantitative Susceptibility Mapping of Venous Vessels in Neonates with Perinatal Asphyxia
A.M. Weber, Y. Zhang, C. Kames, A. Rauscher
American Journal of Neuroradiology Jul 2021, 42 (7) 1327-1333; DOI: 10.3174/ajnr.A7086
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Pediatric Neuroimaging

  • Frontal Paraventricular Cysts
  • Sodium MRI in Pediatric Brain Tumors
  • FRACTURE MR in Congenital Vertebral Anomalies
Show more Pediatric Neuroimaging

Functional

  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire