Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

The Brain Metabolic Signature in Superagers Using In Vivo 1H-MRS: A Pilot Study

L.L. de Godoy, A. Studart-Neto, M. Wylezinska-Arridge, M.H. Tsunemi, N.C. Moraes, M.S. Yassuda, A.M. Coutinho, C.A. Buchpiguel, R. Nitrini, S. Bisdas and C. da Costa Leite
American Journal of Neuroradiology October 2021, 42 (10) 1790-1797; DOI: https://doi.org/10.3174/ajnr.A7262
L.L. de Godoy
aFrom the Department of Radiology and Oncology (L.L.d.G., C.d.C.L.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
dThe National Hospital of Neurology and Neurosurgery (M.W.-A., S.B.), University College London, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.L. de Godoy
A. Studart-Neto
bDepartment of Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Studart-Neto
M. Wylezinska-Arridge
dThe National Hospital of Neurology and Neurosurgery (M.W.-A., S.B.), University College London, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wylezinska-Arridge
M.H. Tsunemi
eDepartment of Biostatistics, Institute of Biosciences (M.H.T.), Universidade Estadual Paulista, Botucatu, Sao Paulo, SP, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.H. Tsunemi
N.C. Moraes
bDepartment of Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N.C. Moraes
M.S. Yassuda
bDepartment of Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.S. Yassuda
A.M. Coutinho
cDivision and Laboratory of Nuclear Medicine (A.M.C., C.A.B.), Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.M. Coutinho
C.A. Buchpiguel
cDivision and Laboratory of Nuclear Medicine (A.M.C., C.A.B.), Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.A. Buchpiguel
R. Nitrini
bDepartment of Neurology (A.S.-N., N.C.M., M.S.Y., R.N.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Nitrini
S. Bisdas
dThe National Hospital of Neurology and Neurosurgery (M.W.-A., S.B.), University College London, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Bisdas
C. da Costa Leite
aFrom the Department of Radiology and Oncology (L.L.d.G., C.d.C.L.), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. da Costa Leite
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. de Godoy LL,
    2. Alves CA,
    3. Saavedra JS, et al
    . Understanding brain resilience in superagers: a systematic review. Neuroradiology 2021;63:663–83 doi:10.1007/s00234-020-02562-1 pmid:32995945
    CrossRefPubMed
  2. 2.↵
    1. Harrison TM,
    2. Weintraub S,
    3. Mesulam MM, et al
    . Superior memory and higher cortical volumes in unusually successful cognitive aging. J Int Neuropsychol Soc 2012;18:1081–85 doi:10.1017/S1355617712000847 pmid:23158231
    CrossRefPubMed
  3. 3.↵
    1. Gefen T,
    2. Peterson M,
    3. Papastefan ST, et al
    . Morphometric and histologic substrates of cingulate integrity in elders with exceptional memory capacity. J Neurosci 2015;35:1781–91 doi:10.1523/JNEUROSCI.2998-14.2015 pmid:25632151
    Abstract/FREE Full Text
  4. 4.↵
    1. Wang X,
    2. Ren P,
    3. Baran TM, et al
    . Alzheimer's Disease Neuroimaging Initiative. Longitudinal functional brain mapping in supernormals. Cereb Cortex 2019;29:242–52 doi:10.1093/cercor/bhx322 pmid:29186360
    CrossRefPubMed
  5. 5.↵
    1. Zhang J,
    2. Andreano JM,
    3. Dickerson BC, et al
    . Stronger functional connectivity in the default mode and salience networks is associated with youthful memory in superaging. Cereb Cortex 2020;30:72–84 doi:10.1093/cercor/bhz071 pmid:31058917
    CrossRefPubMed
  6. 6.↵
    1. Cleeland C,
    2. Pipingas A,
    3. Scholey A, et al
    . Neurochemical changes in the aging brain: a systematic review. Neurosci Biobehav Rev 2019;98:306–19 doi:10.1016/j.neubiorev.2019.01.003 pmid:30625337
    CrossRefPubMed
  7. 7.↵
    1. Jung RE,
    2. Gasparovic C,
    3. Chavez RS, et al
    . Imaging intelligence with proton magnetic resonance spectroscopy. Intelligence 2009;37:192–98 doi:10.1016/j.intell.2008.10.009 pmid:19936275
    CrossRefPubMed
  8. 8.↵
    1. Jung RE,
    2. Yeo RA,
    3. Chiulli SJ, et al
    . Myths of neuropsychology: intelligence, neurometabolism, and cognitive ability. Clin Neuropsychol 2000;14:535–45 doi:10.1076/clin.14.4.535.7198 pmid:11262722
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Jung RE,
    2. Brooks WM,
    3. Yeo RA, et al
    . Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proc Bio Sci 1999;266:1375–79 doi:10.1098/rspb.1999.0790 pmid:10445292
    CrossRefPubMed
  10. 10.↵
    1. Jung RE,
    2. Yeo RA,
    3. Love TM, et al
    . Biochemical markers of mood: a proton magnetic resonance spectroscopy study of normal human brain. Biol Psychiatry 2002;51:224–29 doi:10.1016/S0006-3223(01)01224-0 pmid:11839365
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Jung RE,
    2. Gasparovic C,
    3. Chavez RS, et al
    . Biochemical support for the “Threshold” theory of creativity: a magnetic resonance spectroscopy study. J Neurosci 2009;29:5319–25 doi:10.1523/JNEUROSCI.0588-09.2009 pmid:19386928
    Abstract/FREE Full Text
  12. 12.↵
    1. Ryman SG,
    2. Gasparovic C,
    3. Bedrick EJ, et al
    . Brain biochemistry and personality: a magnetic resonance spectroscopy study. PLoS One 2011;6:e26758 doi:10.1371/journal.pone.0026758 pmid:22073190
    CrossRefPubMed
  13. 13.↵
    1. Lee MR,
    2. Denic A,
    3. Hinton DJ, et al
    . Preclinical (1)H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 2012;4:1787–804 doi:10.4155/bio.12.129 pmid:22877223
    CrossRefPubMed
  14. 14.↵
    1. Harris JL,
    2. Yeh HW,
    3. Swerdlow RH, et al
    . High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging. Neurobiol Aging 2014;35:1686–94 doi:10.1016/j.neurobiolaging.2014.01.018 pmid:24559659
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Schmitt F,
    2. Grosu D,
    3. Mohr C, et al
    . 3 Tesla MRI: successful results with higher field strengths. Radiologe 2004;44:31–47 doi:10.1007/s00117-003-1000-x pmid:14997868
    CrossRefPubMed
  16. 16.↵
    1. Jansen JF,
    2. Backes WH,
    3. Nicolay K, et al
    . 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 2006;240:318–32 doi:10.1148/radiol.2402050314 pmid:16864664
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Chiu PW,
    2. Mak HK,
    3. Yau KK, et al
    . Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3T. Age (Dordr) 2014;36:251–64 doi:10.1007/s11357-013-9545-8 pmid:23709317
    CrossRefPubMed
  18. 18.↵
    1. Oz G,
    2. Alger JR,
    3. Barker PB, et al
    . MRS Consensus Group. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014;270:658–79 doi:10.1148/radiol.13130531 pmid:24568703
    CrossRefPubMed
  19. 19.↵
    1. Folstein MF,
    2. Folstein SE,
    3. McHugh PR
    . Mini-Mental State: a practical guide for grading the mental state of patients for the clinician. J Psych Res 1975;12:189–98 doi:10.1016/0022-3956(75)90026-6 pmid:1202204
    CrossRefPubMed
  20. 20.↵
    1. Brucki S,
    2. Nitrini R,
    3. Caramelli P, et al
    . Suggestions for utilization of the mini-mental state examination in Brazil [in Portuguese]. Arq Neuropsiquiatr 2003;61:777–81 doi:10.1590/S0004-282X2003000500014 pmid:14595482
    CrossRefPubMed
  21. 21.↵
    1. Pfeffer RI,
    2. Kurosaki TT,
    3. Harrah CH Jr., et al
    . Measurement of functional activities in older adults in the community. J Gerontol 1982;37:323–29 doi:10.1093/geronj/37.3.323 pmid:7069156
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. McKhann GM,
    2. Knopman DS,
    3. Chertkow H, et al
    . The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263–69 doi:10.1016/j.jalz.2011.03.005 pmid:21514250
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Albert MS,
    2. DeKosky ST,
    3. Dickson D, et al
    . The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:270–79 doi:10.1016/j.jalz.2011.03.008 pmid:21514249
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Nitrini R,
    2. Caramelli P,
    3. Porto CS, et al
    . Brief cognitive battery in the diagnosis of mild Alzheimer's disease in subjects with medium and high levels of education. Dement Neuropsychol 2007;1:32–36 doi:10.1590/S1980-57642008DN10100006 pmid:29213365
    CrossRefPubMed
  25. 25.↵
    1. Rogalski EJ,
    2. Gefen T,
    3. Shi J, et al
    . Youthful memory capacity in old brains: anatomic and genetic clues from the Northwestern SuperAging Project. J Cogn Neurosci 2013;25:29–36 doi:10.1162/jocn_a_00300 pmid:23198888
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Heaton RK,
    2. Miller SW,
    3. Taylor MJ, et al
    . Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically Adjusted Neuropsychological Norms For African American and Caucasian adults. 2004. http://www4.parinc.com/Products/Product.aspx?ProductID=RCNAAC. Accessed September 10, 2020
  27. 27.↵
    1. Shirk SD,
    2. Mitchell MB,
    3. Shaughnessy LW, et al
    . A web-based normative calculator for the Uniform Data Set (UDS) neuropsychological test battery. Alzheimers Res Ther 2011;3:32 doi:10.1186/alzrt94 pmid:22078663
    CrossRefPubMed
  28. 28.↵
    1. Provencher SW
    . Estimation of metabolite concentrations from localizedin vivo proton NMR spectra. Magn Reson Med 1993;30:672–79 doi:10.1002/mrm.1910300604 pmid:8139448
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Seeger U,
    2. Klose U,
    3. Mader I, et al
    . Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 2003;49:19–28 doi:10.1002/mrm.10332 pmid:12509816
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Kreis R,
    2. Ernst T,
    3. Ross BD
    . Absolute quantitation of water and metabolites in the human brain, II: metabolite concentrations. J Magn Reson B 1993;102:9–19 doi:10.1006/jmrb.1993.1056
    CrossRefWeb of Science
  31. 31.↵
    1. Ernst T,
    2. Kreis R,
    3. Ross BD
    . Absolute quantitation of water and metabolites in the human brain, I: compartments and water. J Magn Reson B 1993;102:1–8 doi:10.1006/jmrb.1993.1055
    CrossRefWeb of Science
  32. 32.↵
    1. Edden RA,
    2. Puts NA,
    3. Harris AD, et al
    . Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging 2014;40:1445–52 doi:10.1002/jmri.24478 pmid:25548816
    CrossRefPubMed
  33. 33.↵
    1. Friston KJ,
    2. Holmes AP,
    3. Worsley KJ, et al
    . Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1994;2:189–210 doi:10.1002/hbm.460020402
    CrossRef
  34. 34.↵
    1. Pedrosa de Barros N,
    2. Slotboom J
    . Quality management in in vivo proton MRS. Anal Biochem 2017;529:98–116 doi:10.1016/j.ab.2017.01.017 pmid:28115170
    CrossRefPubMed
  35. 35.↵
    1. Simpson R,
    2. Devenyi GA,
    3. Jezzard P, et al
    . Advanced processing and simulation of MRS data using the FID appliance (FID-A): an open source, MATLAB-based toolkit. Magn Reson Med 2017;77:23–33 doi:10.1002/mrm.26091 pmid:26715192
    CrossRefPubMed
  36. 36.↵
    1. Charlton RA,
    2. McIntyre DJO,
    3. Howe FA, et al
    . The relationship between white matter brain metabolites and cognition in normal aging: the GENIE study. Brain Res 2007;1164:108–16 doi:10.1016/j.brainres.2007.06.027 pmid:17632090
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Driscoll I,
    2. Hamilton DA,
    3. Petropoulos H, et al
    . The aging hippocampus: cognitive, biochemical and structural findings. Cereb Cortex 2003;13:1344–51 doi:10.1093/cercor/bhg081 pmid:14615299
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Ross AJ,
    2. Sachdev PS,
    3. Wen W, et al
    . Cognitive correlates of 1H MRS measures in the healthy elderly brain. Brain Res Bull 2005;66:9–16 doi:10.1016/j.brainresbull.2005.01.015 pmid:15925139
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Kochunov P,
    2. Coyle T,
    3. Lancaster J, et al
    . Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. Neuroimage 2010;49:1190–99 doi:10.1016/j.neuroimage.2009.09.052 pmid:19796691
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Erickson KI,
    2. Weinstein AM,
    3. Sutton BP, et al
    . Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory. Brain Behav 2012;2:32–41 doi:10.1002/brb3.30 pmid:22574272
    CrossRefPubMed
  41. 41.↵
    1. Gomar JJ,
    2. Gordon ML,
    3. Dickinson D, et al
    . APOE genotype modulates proton magnetic resonance spectroscopy metabolites in the aging brain. Biol Psychiatry 2014;75:686–92 doi:10.1016/j.biopsych.2013.05.022 pmid:23831342
    CrossRefPubMed
  42. 42.↵
    1. Rogalski EJ
    . Don't forget: age is a relevant variable in defining SuperAgers. Alzheimers Dement (Amst) 2019;11:560–61 doi:10.1016/j.dadm.2019.05.008 pmid:31909169
    CrossRefPubMed
  43. 43.↵
    1. Nyberg L,
    2. Lövdén M,
    3. Riklund K, et al
    . Memory aging and brain maintenance. Trends Cogn Sci 2012;16:292–305 doi:10.1016/j.tics.2012.04.005 pmid:22542563
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Borelli WV,
    2. Carmona KC,
    3. Studart-Neto A, et al
    . Operationalized definition of older adults with high cognitive performance. Dement Neuropsychol 2018;12:221–27 doi:10.1590/1980-57642018dn12-030001 pmid:30425784
    CrossRefPubMed
  45. 45.↵
    1. Minoshima S,
    2. Giordani B,
    3. Berent S, et al
    . Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997;42:85–94 doi:10.1002/ana.410420114 pmid:9225689
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Lehmann M,
    2. Rohrer JD,
    3. Clarkson MJ, et al
    . Reduced cortical thickness in the posterior cingulate gyrus is characteristic of both typical and atypical Alzheimer's disease. J Alzheimers Dis 2010;20:587–98 doi:10.3233/JAD-2010-1401 pmid:20182057
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Park EJ,
    2. Lyra KP,
    3. Lee HW, et al
    . Correlation between hippocampal volumes and proton magnetic resonance spectroscopy of the posterior cingulate gyrus and hippocampi in Alzheimer's disease. Dement Neuropsychol 2010;4:109–13 doi:10.1590/S1980-57642010DN40200006 pmid:29213672
    CrossRefPubMed
  48. 48.↵
    1. Scavuzzo CJ,
    2. Moulton CJ,
    3. Larsen RJ
    . The use of magnetic resonance spectroscopy for assessing the effect of diet on cognition. Nutr Neurosci 2018;21:1–15 doi:10.1080/1028415X.2016.1218191 pmid:27571302
    CrossRefPubMed
  49. 49.↵
    1. Chakraborty G,
    2. Mekala P,
    3. Yahya D, et al
    . Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 2001;78:736–45 doi:10.1046/j.1471-4159.2001.00456.x pmid:11520894
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. White TL,
    2. Gonsalves MA,
    3. Cohen RA, et al
    . The neurobiology of wellness: 1H-MRS correlates of agency, flexibility and neuroaffective reserves in healthy young adults. Neuroimage 2021;225:117509 doi:10.1016/j.neuroimage.2020.117509 pmid:33127477
    CrossRefPubMed
  51. 51.↵
    1. Jewsbury PA,
    2. Bowden SC,
    3. Duff K
    . The Cattell–Horn–Carroll Model of cognition for clinical assessment. J Psychoeduc Assess 2017;35:547–67 doi:10.1177/0734282916651360
    CrossRef
  52. 52.↵
    1. Hädel S,
    2. Wirth C,
    3. Rapp M, et al
    . Effects of age and sex on the concentrations of glutamate and glutamine in the human brain. J Magn Reson Imaging 2013;38:1480–87 doi:10.1002/jmri.24123 pmid:23564615
    CrossRefPubMed
  53. 53.↵
    1. Marjańska M,
    2. Riley McCarten J,
    3. Hodges J, et al
    . Region-specific aging of the human brain as evidenced by neurochemical profiles measured noninvasively in the posterior cingulate cortex and the occipital lobe using 1H magnetic resonance spectroscopy at 7 T. Neuroscience 2017;354:168–77 doi:10.1016/j.neuroscience.2017.04.035 pmid:28476320
    CrossRefPubMed
  54. 54.↵
    1. Sailasuta N,
    2. Ernst T,
    3. Chang L
    . Regional variations and the effects of age and gender on glutamate concentrations in the human brain. Magnetic Resonance Imaging 2008;26:667–75 doi:10.1016/j.mri.2007.06.007 pmid:17692491
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Yang ZY,
    2. Yue Q,
    3. Xing HY, et al
    . A quantitative analysis of (1)H-MR spectroscopy at 3.0 T of three brain regions from childhood to middle age. Br J Radiol 2015;88:20140693 doi:10.1259/bjr.20140693 pmid:26081448
    CrossRefPubMed
  56. 56.↵
    1. Zahr NM,
    2. Mayer D,
    3. Rohlfing T, et al
    . In vivo glutamate measured with magnetic resonance spectroscopy: behavioral correlates in aging. Neurobiol Aging 2013;34:1265–76 doi:10.1016/j.neurobiolaging.2012.09.014 pmid:23116877
    CrossRefPubMed
  57. 57.↵
    1. Eylers VV,
    2. Maudsley AA,
    3. Bronzlik P, et al
    . Detection of normal aging effects on human brain metabolite concentrations and microstructure with whole-brain MR spectroscopic imaging and quantitative MR imaging. AJNR Am J Neuroradiol 2016;37:447–54 doi:10.3174/ajnr.A4557 pmid:26564440
    Abstract/FREE Full Text
  58. 58.↵
    1. Ding, XQ,
    2. Maudsley, AA,
    3. Sabati, M, et al
    . Physiological neuronal decline in healthy aging human brain: an in vivo study with MRI and short echo-time whole-brain 1H MR spectroscopic imaging. Neuroimage 2016;137:45–51 doi:10.1016/j.neuroimage.2016.05.014 pmid:27164326
    CrossRefPubMed
  59. 59.↵
    1. Drachman DA
    . Aging of the brain, entropy, and Alzheimer disease. Neurology 2006;67:1340–52 doi:10.1212/01.wnl.0000240127.89601.83 pmid:17060558
    Abstract/FREE Full Text
  60. 60.↵
    1. Peters A,
    2. Morrison JH,
    3. Rosene DL, et al
    . Feature article: are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex 1998;8:295–300 doi:10.1093/cercor/8.4.295 pmid:9651126
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Woods DL,
    2. Wyma JM,
    3. Herron TJ, et al
    . The effects of aging, malingering, and traumatic brain injury on computerized trail-making test performance. PLoS One 2015;10:e0124345 doi:10.1371/journal.pone.0124345 pmid:26060999
    CrossRefPubMed
  62. 62.↵
    1. Graff-Radford J,
    2. Kantarci K
    . Magnetic resonance spectroscopy in Alzheimer's disease. Neuropsychiatr Dis Treat 2013;9:687–96 doi:10.2147/NDT.S35440 pmid:23696705
    CrossRefPubMed
  63. 63.↵
    1. Coutinho A,
    2. Porto FH,
    3. Zampieri PF, et al
    . Analysis of the posterior cingulate cortex with [18 F] FDG-PET and NAA/mI in mild cognitive impairment and Alzheimer's disease: correlations and differences between the two methods. Dement Neuropsychol 2015;9:385–93 doi:10.1590/1980-57642015DN94000385 pmid:29213988
    CrossRefPubMed
  64. 64.↵
    1. Nedelska Z,
    2. Przybelski SA,
    3. Lesnick TG, et al
    . 1H-MRS metabolites and rate of β-amyloid accumulation on serial PET in clinically normal adults. Neurology 2017;89:1391–99 doi:10.1212/WNL.0000000000004421 pmid:28842444
    Abstract/FREE Full Text
  65. 65.↵
    1. Voevodskaya O,
    2. Poulakis K,
    3. Sundgren P, et al
    . Swedish BioFINDER Study Group. Brain myoinositol as a potential marker of amyloid-related pathology: a longitudinal study. Neurology 2019;92:e395–405 doi:10.1212/WNL.0000000000006852
    Abstract/FREE Full Text
  66. 66.↵
    1. Sanabria ER,
    2. Wozniak KM,
    3. Slusher BS, et al
    . GCP II (NAALADase) inhibition suppresses mossy fiber-CA3 synaptic neurotransmission by a presynaptic mechanism. J Neurophysiol 2004;91:182–93 doi:10.1152/jn.00465.2003 pmid:12917384
    CrossRefPubMedWeb of Science
  67. 67.↵
    1. Zhong C,
    2. Zhao X,
    3. Van KC, et al
    . NAAG, peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat. J Neurochem 2006;97:1015–25 doi:10.1111/j.1471-4159.2006.03786.x pmid:16606367
    CrossRefPubMed
  68. 68.↵
    1. Berent-Spillson A,
    2. Robinson AM,
    3. Golovoy D, et al
    . Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3. J Neurochem 2004;89:90–99 doi:10.1111/j.1471-4159.2003.02321.x pmid:15030392
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Berent-Spillson A,
    2. Russell JW
    . Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutathione concentration. J Neurochem 2007;101:342–54 doi:10.1111/j.1471-4159.2006.04373.x pmid:17402968
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Kuehn BM
    . In Alzheimer research, glucose metabolism moves to center stage. JAMA 2020;323:297–99 doi:10.1001/jama.2019.20939 pmid:31913419
    CrossRefPubMed
  71. 71.↵
    1. Gruber S,
    2. Pinker K,
    3. Riederer F, et al
    . Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur J Radiol 2008;68:320–27 doi:10.1016/j.ejrad.2007.08.038 pmid:17964104
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. David JP,
    2. Ghozali F,
    3. Fallet-Bianco C, et al
    . Glial reaction in the hippocampal formation is highly correlated with aging in human brain. Neurosci Lett 1997;235:53–56 doi:10.1016/s0304-3940(97)00708-8 pmid:9389594
    CrossRefPubMedWeb of Science
  73. 73.↵
    1. Sandhir R,
    2. Onyszchuk G,
    3. Berman NE
    . Exacerbated glial response in the aged mouse hippocampus following controlled cortical impact injury. Exp Neurol 2008;213:372–80 doi:10.1016/j.expneurol.2008.06.013 pmid:18692046
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Duarte JM,
    2. Do KQ,
    3. Gruetter R
    . Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 2014;35:1660–68 doi:10.1016/j.neurobiolaging.2014.01.135 pmid:24560998
    CrossRefPubMed
  75. 75.↵
    1. Novotny EJ Jr.,
    2. Fulbright RK,
    3. Pearl PL, et al
    . Magnetic resonance spectroscopy of neurotransmitters in human brain. Ann Neurol 2003;54(Suppl 6):S25–31 doi:10.1002/ana.10697 pmid:12891651
    CrossRefPubMed
  76. 76.↵
    1. Hoyer C,
    2. Gass N,
    3. Weber-Fahr W, et al
    . Advantages and challenges of small animal magnetic resonance imaging as a translational tool. Neuropsychobiology 2014;69:187–201 doi:10.1159/000360859 pmid:24863537
    CrossRefPubMed
  77. 77.↵
    1. Ramadan S,
    2. Lin A,
    3. Stanwell P
    . Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed 2013;26:1630–46 doi:10.1002/nbm.3045 pmid:24123328
    CrossRefPubMedWeb of Science
  78. 78.↵
    1. Zeydan B,
    2. Deelchand DK,
    3. Tosakulwong N, et al
    . Decreased glutamate levels in patients with amnestic mild cognitive impairment: an sLASER proton MR spectroscopy and PiB-PET study. J Neuroimaging 2017;27:630–36 doi:10.1111/jon.12454 pmid:28661060
    CrossRefPubMed
  79. 79.↵
    1. Wong D,
    2. Atiya S,
    3. Fogarty J, et al
    . Reduced hippocampal glutamate and posterior cingulate N-acetyl aspartate in mild cognitive impairment and Alzheimer's disease is associated with episodic memory performance and white matter integrity in the cingulum: a pilot study. J Alzheimers Dis 2020;73:1385–405 doi:10.3233/JAD-190773 pmid:31958093
    CrossRefPubMed
  80. 80.↵
    1. Suri S,
    2. Emir U,
    3. Stagg CJ, et al
    . Effect of age and the APOE gene on metabolite concentrations in the posterior cingulate cortex. Neuroimage 2017;152:509–16 doi:10.1016/j.neuroimage.2017.03.031 pmid:28323160
    CrossRefPubMed
  81. 81.↵
    1. Reyngoudt H,
    2. Claeys T,
    3. Vlerick L, et al
    . Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: a 1H-MRS study. Eur J Radiol 2012;81:e223–31 doi:10.1016/j.ejrad.2011.01.106
    CrossRefPubMed
  82. 82.↵
    1. Kim BR,
    2. Kwon H,
    3. Chun MY, et al
    . White matter integrity is associated with the amount of physical activity in older adults with super-aging. Front Aging Neurosci 2020;12:549983 doi:10.3389/fnagi.2020.549983] pmid:33192451
    CrossRefPubMed
  83. 83.↵
    1. Huentelman MJ,
    2. Piras IS,
    3. Siniard AL, et al
    . Associations of MAP2K3 gene variants with superior memory in SuperAgers. Front Aging Neurosci 2018;10:155 doi:10.3389/fnagi.2018.00155 pmid:29896098
    CrossRefPubMed
  84. 84.↵
    1. Kreis R,
    2. Slotboom J,
    3. Hofmann L, et al
    . Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magn Reson Med 2005;54:761–68 doi:10.1002/mrm.20673 pmid:16161114
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (10)
American Journal of Neuroradiology
Vol. 42, Issue 10
1 Oct 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Brain Metabolic Signature in Superagers Using In Vivo 1H-MRS: A Pilot Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L.L. de Godoy, A. Studart-Neto, M. Wylezinska-Arridge, M.H. Tsunemi, N.C. Moraes, M.S. Yassuda, A.M. Coutinho, C.A. Buchpiguel, R. Nitrini, S. Bisdas, C. da Costa Leite
The Brain Metabolic Signature in Superagers Using In Vivo 1H-MRS: A Pilot Study
American Journal of Neuroradiology Oct 2021, 42 (10) 1790-1797; DOI: 10.3174/ajnr.A7262

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
The Brain Metabolic Signature in Superagers Using In Vivo 1H-MRS: A Pilot Study
L.L. de Godoy, A. Studart-Neto, M. Wylezinska-Arridge, M.H. Tsunemi, N.C. Moraes, M.S. Yassuda, A.M. Coutinho, C.A. Buchpiguel, R. Nitrini, S. Bisdas, C. da Costa Leite
American Journal of Neuroradiology Oct 2021, 42 (10) 1790-1797; DOI: 10.3174/ajnr.A7262
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Phenotyping Superagers Using Resting-State fMRI
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
  • Clinical Outcomes After Chiari I Decompression
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire