Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics

E.H. Middlebrooks, R.A. Domingo, T. Vivas-Buitrago, L. Okromelidze, T. Tsuboi, J.K. Wong, R.S. Eisinger, L. Almeida, M.R. Burns, A. Horn, R.J. Uitti, R.E. Wharen, V.M. Holanda and S.S. Grewal
American Journal of Neuroradiology September 2020, 41 (9) 1558-1568; DOI: https://doi.org/10.3174/ajnr.A6693
E.H. Middlebrooks
aFrom the Departments of Radiology (E.H.M., L.O.)
bNeurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.H. Middlebrooks
R.A. Domingo
bNeurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.A. Domingo
T. Vivas-Buitrago
bNeurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Vivas-Buitrago
L. Okromelidze
aFrom the Departments of Radiology (E.H.M., L.O.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Okromelidze
T. Tsuboi
dDepartment of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
eDepartment of Neurology (T.T.), Nagoya University Graduate School of Medicine, Nagoya, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Tsuboi
J.K. Wong
dDepartment of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.K. Wong
R.S. Eisinger
dDepartment of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.S. Eisinger
L. Almeida
dDepartment of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Almeida
M.R. Burns
dDepartment of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.R. Burns
A. Horn
fDepartment for Neurology (A.H.), Charité, University Medicine Berlin, Berlin, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Horn
R.J. Uitti
cand Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.J. Uitti
R.E. Wharen Jr
bNeurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.E. Wharen Jr
V.M. Holanda
gCenter of Neurology and Neurosurgery Associates (V.M.H.), BP–A Beneficência Portuguesa de São Paulo, São Paulo, Brazil.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V.M. Holanda
S.S. Grewal
bNeurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.S. Grewal
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Franzini A,
    2. Cordella R,
    3. Messina G, et al
    . Targeting the brain: considerations in 332 consecutive patients treated by deep brain stimulation (DBS) for severe neurological diseases. Neurol Sci 2012;33:1285–1303 doi:10.1007/s10072-012-0937-9 pmid:22271259
    CrossRefPubMed
  2. 2.↵
    1. DeLong MR,
    2. Wichmann T
    . Basal ganglia circuits as targets for neuromodulation in Parkinson's disease. JAMA Neurol 2015;72:1354–60 doi:10.1001/jamaneurol.2015.2397 pmid:26409114
    CrossRefPubMed
  3. 3.↵
    1. Edlow BL,
    2. Mareyam A,
    3. Horn A, et al
    . 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci Data 2019;6:244 doi:10.1038/s41597-019-0254-8 pmid:31666530
    CrossRefPubMed
  4. 4.↵
    1. Yeh FC,
    2. Panesar S,
    3. Fernandes D, et al
    . Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 2018;178:57–68 doi:10.1016/j.neuroimage.2018.05.027 pmid:29758339
    CrossRefPubMed
  5. 5.↵
    1. Yeh FC,
    2. Tseng WY
    . NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 2011;58:91–99 doi:10.1016/j.neuroimage.2011.06.021 pmid:21704171
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Yeh FC,
    2. Wedeen VJ,
    3. Tseng WY
    . Generalized q-sampling imaging. IEEE Trans Med Imaging 2010;29:1626–35 doi:10.1109/TMI.2010.2045126 pmid:20304721
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Ewert S,
    2. Plettig P,
    3. Li N, et al
    . Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage 2018;170:271–82 doi:10.1016/j.neuroimage.2017.05.015 pmid:28536045
    CrossRefPubMed
  8. 8.↵
    1. Horn A,
    2. Wenzel G,
    3. Irmen F, et al
    . Deep brain stimulation induced normalization of the human functional connectome in Parkinson's disease. Brain 2019;142:3129–43 doi:10.1093/brain/awz239 pmid:31412106
    CrossRefPubMed
  9. 9.↵
    1. Horn A,
    2. Li N,
    3. Dembek TA, et al
    . Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 2019;184:293–316 doi:10.1016/j.neuroimage.2018.08.068 pmid:30179717
    CrossRefPubMed
  10. 10.↵
    1. Flora ED,
    2. Perera CL,
    3. Cameron AL, et al
    . Deep brain stimulation for essential tremor: a systematic review. Mov Disord 2010;25:1550–59 doi:10.1002/mds.23195 pmid:20623768
    CrossRefPubMed
  11. 11.↵
    1. Blomstedt P,
    2. Stenmark Persson R,
    3. Hariz GM, et al
    . Deep brain stimulation in the caudal zona incerta versus best medical treatment in patients with Parkinson's disease: a randomised blinded evaluation. J Neurol Neurosurg Psychiatry 2018;89:710–16 doi:10.1136/jnnp-2017-317219 pmid:29386253
    Abstract/FREE Full Text
  12. 12.↵
    1. Eisinger RS,
    2. Wong J,
    3. Almeida L, et al
    . Ventral intermediate nucleus versus zona incerta region deep brain stimulation in essential tremor. Mov Disord Clin Pract 2018;5:75–82 doi:10.1002/mdc3.12565
    CrossRef
  13. 13.↵
    1. Foote KD,
    2. Okun MS
    . Ventralis intermedius plus ventralis oralis anterior and posterior deep brain stimulation for posttraumatic Holmes tremor: two leads may be better than one: technical note. Neurosurgery 2005;56:E445 doi:10.1227/01.neu.0000157104.87448.78 pmid:15794849
    CrossRefPubMed
  14. 14.↵
    1. Sammartino F,
    2. Krishna V,
    3. King NK, et al
    . Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation. Mov Disord 2016;31:1217–25 doi:10.1002/mds.26633 pmid:27214406
    CrossRefPubMed
  15. 15.↵
    1. Middlebrooks E,
    2. Tuna I,
    3. Grewal S, et al
    . Segmentation of the globus pallidus internus using probabilistic diffusion tractography for deep brain stimulation targeting in Parkinson's disease. AJNR Am J Neuroradiol 2018;39:1127–34 doi:10.3174/ajnr.A5641 pmid:29700048
    Abstract/FREE Full Text
  16. 16.↵
    1. Schlaier J,
    2. Anthofer J,
    3. Steib K, et al
    . Deep brain stimulation for essential tremor: targeting the dentato-rubro-thalamic tract? Neuromodulation 2015;18:105–12 doi:10.1111/ner.12238 pmid:25209587
    CrossRefPubMed
  17. 17.↵
    1. Meola A,
    2. Comert A,
    3. Yeh FC, et al
    . The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg 2016;124:1406–12 doi:10.3171/2015.4.JNS142741 pmid:26452117
    CrossRefPubMed
  18. 18.↵
    1. Marques JP,
    2. Kober T,
    3. Krueger G, et al
    . MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 2010;49:1271–81 doi:10.1016/j.neuroimage.2009.10.002 pmid:19819338
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Tourdias T,
    2. Saranathan M,
    3. Levesque IR, et al
    . Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. Neuroimage 2014;84:534–45 doi:10.1016/j.neuroimage.2013.08.069 pmid:24018302
    CrossRefPubMed
  20. 20.↵
    1. Jorge J,
    2. Gretsch F,
    3. Najdenovska E, et al
    . Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T. Magn Reson Med 2020;84:1218–34 doi:10.1002/mrm.28197 pmid:32052486
    CrossRefPubMed
  21. 21.↵
    1. Middlebrooks EH,
    2. Tuna IS,
    3. Almeida L, et al
    . Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus. Neuroimage Clin 2018;20:1266–73 doi:10.1016/j.nicl.2018.10.009 pmid:30318403
    CrossRefPubMed
  22. 22.
    1. Kim W,
    2. Sharim J,
    3. Tenn S, et al
    . Diffusion tractography imaging-guided frameless linear accelerator stereotactic radiosurgical thalamotomy for tremor: case report. J Neurosurg 2018;128:215–21 doi:10.3171/2016.10.JNS161603 pmid:28298033
    CrossRefPubMed
  23. 23.
    1. Pouratian N,
    2. Zheng Z,
    3. Bari AA, et al
    . Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg 2011;115:995–1004 doi:10.3171/2011.7.JNS11250 pmid:21854118
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Tsolaki E,
    2. Downes A,
    3. Speier W, et al
    . The potential value of probabilistic tractography-based for MR-guided focused ultrasound thalamotomy for essential tremor. Neuroimage Clin 2018;17:1019–27 doi:10.1016/j.nicl.2017.12.018 pmid:29527503
    CrossRefPubMed
  25. 25.↵
    1. Akram H,
    2. Dayal V,
    3. Mahlknecht P, et al
    . Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin 2018;18:130–42 doi:10.1016/j.nicl.2018.01.008 pmid:29387530
    CrossRefPubMed
  26. 26.↵
    1. Calabrese E,
    2. Hickey P,
    3. Hulette C, et al
    . Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Hum Brain Mapp 2015;36:3167–78 doi:10.1002/hbm.22836 pmid:26043869
    CrossRefPubMed
  27. 27.↵
    1. Behrens TE,
    2. Johansen-Berg H,
    3. Woolrich MW, et al
    . Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003;6:750–57 doi:10.1038/nn1075 pmid:12808459
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Middlebrooks EH,
    2. Holanda VM,
    3. Tuna IS, et al
    . A method for pre-operative single-subject thalamic segmentation based on probabilistic tractography for essential tremor deep brain stimulation. Neuroradiology 2018;60:303–09 doi:10.1007/s00234-017-1972-2 pmid:29307012
    CrossRefPubMed
  29. 29.↵
    1. Al-Fatly B,
    2. Ewert S,
    3. Kubler D, et al
    . Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain 2019;142:3086–98 doi:10.1093/brain/awz236 pmid:31377766
    CrossRefPubMed
  30. 30.↵
    1. Middlebrooks EH,
    2. Grewal SS,
    3. Holanda VM
    . Complexities of connectivity-based DBS targeting: rebirth of the debate on thalamic and subthalamic treatment of tremor. Neuroimage Clin 2019;22:101761 doi:10.1016/j.nicl.2019.101761 pmid:30987840
    CrossRefPubMed
  31. 31.↵
    1. Anderson JS,
    2. Dhatt HS,
    3. Ferguson MA, et al
    . Functional connectivity targeting for deep brain stimulation in essential tremor. AJNR Am J Neuroradiol 2011;32:1963–68 doi:10.3174/ajnr.A2638 pmid:21885716
    Abstract/FREE Full Text
  32. 32.↵
    1. Greene DJ,
    2. Marek S,
    3. Gordon EM, et al
    . Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals. Neuron 2020;105:742–58.e6 doi:10.1016/j.neuron.2019.11.012 pmid:31836321
    CrossRefPubMed
  33. 33.↵
    1. Gibson WS,
    2. Jo HJ,
    3. Testini P, et al
    . Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor. Brain 2016;139:2198–210 doi:10.1093/brain/aww145 pmid:27329768
    CrossRefPubMed
  34. 34.↵
    1. Ramirez-Zamora A,
    2. Ostrem JL
    . Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson's disease: a review. JAMA Neurol 2018;75:367–72 doi:10.1001/jamaneurol.2017.4321 pmid:29356826
    CrossRefPubMed
  35. 35.↵
    1. Holanda VM,
    2. Okun MS,
    3. Middlebrooks EH, et al
    . Postmortem dissections of common targets for lesion and deep brain stimulation surgeries. Neurosurgery 2020;86:860–72 doi:10.1093/neuros/nyz318 pmid:31504849
    CrossRefPubMed
  36. 36.↵
    1. Parent A,
    2. Hazrati L-N
    . Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev 1995;20:128–54 doi:10.1016/0165-0173(94)00008-D pmid:7711765
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Alho EJL,
    2. Alho A,
    3. Horn A, et al
    . The ansa subthalamica: a neglected fiber tract. Mov Disord 2020;35:75–80 doi:10.1002/mds.27901 pmid:31758733
    CrossRefPubMed
  38. 38.↵
    1. Petersen MV,
    2. Mlakar J,
    3. Haber SN, et al
    . Holographic reconstruction of axonal pathways in the human brain. Neuron 2019;104:1056–64 doi:10.1016/j.neuron.2019.09.030 pmid:31708306
    CrossRefPubMed
  39. 39.↵
    1. Eisinger RS,
    2. Cernera S,
    3. Gittis A, et al
    . A review of basal ganglia circuits and physiology: application to deep brain stimulation. Parkinsonism Relat Disord 2019;59:9–20 doi:10.1016/j.parkreldis.2019.01.009 pmid:30658883
    CrossRefPubMed
  40. 40.↵
    1. Grewal SS,
    2. Holanda VM,
    3. Middlebrooks EH
    . Corticopallidal connectome of the globus pallidus externus in humans: an exploratory study of structural connectivity using probabilistic diffusion tractography. AJNR Am J Neuroradiol 2018;39:2120–25 doi:10.3174/ajnr.A5816 pmid:30262639
    Abstract/FREE Full Text
  41. 41.↵
    1. Parent A,
    2. De Bellefeuille L
    . Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by flourescence retrograde labeling method. Brain Res 1982;245:201–13 doi:10.1016/0006-8993(82)90802-2 pmid:7127069
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Maier-Hein KH,
    2. Neher PF,
    3. Houde JC, et al
    . The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 2017;8:1349 doi:10.1038/s41467-017-01285-x pmid:29116093
    CrossRefPubMed
  43. 43.↵
    1. Aquino CC,
    2. Duffley G,
    3. Hedges DM, et al
    . Interleaved deep brain stimulation for dyskinesia management in Parkinson's disease. Mov Disord 2019;34:1722–27 doi:10.1002/mds.27839 pmid:31483534
    CrossRefPubMed
  44. 44.↵
    1. Accolla EA,
    2. Herrojo Ruiz M,
    3. Horn A, et al
    . Brain networks modulated by subthalamic nucleus deep brain stimulation. Brain 2016;139:2503–15 doi:10.1093/brain/aww182 pmid:27412387
    CrossRefPubMed
  45. 45.↵
    1. Akram H,
    2. Sotiropoulos SN,
    3. Jbabdi S, et al
    . Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. Neuroimage 2017;158:332–45 doi:10.1016/j.neuroimage.2017.07.012 pmid:28711737
    CrossRefPubMed
  46. 46.↵
    1. Horn A,
    2. Reich M,
    3. Vorwerk J, et al
    . Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 2017;82:67–78 doi:10.1002/ana.24974 pmid:28586141
    CrossRefPubMed
  47. 47.↵
    1. Lin H,
    2. Na P,
    3. Zhang D, et al
    . Brain connectivity markers for the identification of effective contacts in subthalamic nucleus deep brain stimulation. Hum Brain Mapp 2020;41:2028–36 doi:10.1002/hbm.24927 pmid:31951307
    CrossRefPubMed
  48. 48.↵
    1. Albanese A,
    2. Bhatia K,
    3. Bressman SB, et al
    . Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013;28:863–73 doi:10.1002/mds.25475 pmid:23649720
    CrossRefPubMed
  49. 49.↵
    1. Vidailhet M,
    2. Vercueil L,
    3. Houeto JL, et al
    . Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 2005;352:459–67 doi:10.1056/NEJMoa042187 pmid:15689584
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Vercueil L,
    2. Houeto JL, et al
    1. Vidailhet M
    , French SPIDY Study Group, Vercueil L, Houeto JL, et al. Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol 2007;6:223–29 doi:10.1016/S1474-4422(07)70035-2 pmid:17303528
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Kupsch A,
    2. Benecke R,
    3. Muller J, et al
    . Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 2006;355:1978–90 doi:10.1056/NEJMoa063618 pmid:17093249
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Artusi CA,
    2. Dwivedi A,
    3. Romagnolo A, et al
    . Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2020;91:426–33 doi:10.1136/jnnp-2019-322169 pmid:32079672
    Abstract/FREE Full Text
  53. 53.↵
    1. Okromelidze L,
    2. Tsuboi T,
    3. Eisinger RS, et al
    . Functional and structural connectivity patterns associated with clinical outcomes in deep brain stimulation of the globus pallidus internus for generalized dystonia. AJNR Am J Neuroradiol 2020;41:508–14 doi:10.3174/ajnr.A6429 pmid:32054614
    Abstract/FREE Full Text
  54. 54.↵
    1. Rozanski VE,
    2. Vollmar C,
    3. Cunha JP, et al
    . Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. Neuroimage 2014;84:435–42 doi:10.1016/j.neuroimage.2013.09.009 pmid:24045076
    CrossRefPubMed
  55. 55.↵
    1. Reese R,
    2. Volkmann J
    . Deep brain stimulation for the dystonias: evidence, knowledge gaps, and practical considerations. Mov Disord Clin Pract 2017;4:486–94 doi:10.1002/mdc3.12519 pmid:30363085
    CrossRefPubMed
  56. 56.↵
    1. Tastevin M,
    2. Spatola G,
    3. Régis J, et al
    . Deep brain stimulation in the treatment of obsessive-compulsive disorder: current perspectives. Neuropsychiatr Dis Treat 2019;15:1259–72 doi:10.2147/NDT.S178207 pmid:31190832
    CrossRefPubMed
  57. 57.↵
    1. Greenberg BD,
    2. Gabriels LA,
    3. Malone DA, Jr., et al
    . Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry 2010;15:64–79 doi:10.1038/mp.2008.55 pmid:18490925
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Ahmari SE,
    2. Spellman T,
    3. Douglass NL, et al
    . Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 2013;340:1234–39 doi:10.1126/science.1234733 pmid:23744948
    Abstract/FREE Full Text
  59. 59.↵
    1. Coenen VA,
    2. Panksepp J,
    3. Hurwitz TA, et al
    . Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatry Clin Neurosci 2012;24:223–36 doi:10.1176/appi.neuropsych.11080180 pmid:22772671
    CrossRefPubMed
  60. 60.↵
    1. Hartmann CJ,
    2. Lujan JL,
    3. Chaturvedi A, et al
    . Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS. Front Neurosci 2015;9:519 doi:10.3389/fnins.2015.00519 pmid:26834544
    CrossRefPubMed
  61. 61.↵
    1. Baldermann JC,
    2. Melzer C,
    3. Zapf A, et al
    . Connectivity profile predictive of effective deep brain stimulation in obsessive-compulsive disorder. Biol Psychiatry 2019;85:735–43 doi:10.1016/j.biopsych.2018.12.019 pmid:30777287
    CrossRefPubMed
  62. 62.↵
    1. Coenen VA,
    2. Schlaepfer TE,
    3. Goll P, et al
    . The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder. CNS Spectr 2017;22:282–89 doi:10.1017/S1092852916000286 pmid:27268576
    CrossRefPubMed
  63. 63.↵
    1. Liebrand LC,
    2. Caan MWA,
    3. Schuurman PR, et al
    . Individual white matter bundle trajectories are associated with deep brain stimulation response in obsessive-compulsive disorder. Brain Stimul 2019;12:353–60 doi:10.1016/j.brs.2018.11.014 pmid:30522916
    CrossRefPubMed
  64. 64.↵
    1. Ding SL,
    2. Royall JJ,
    3. Sunkin SM, et al
    . Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 2016;524:3127–481 doi:10.1002/cne.24080 pmid:27418273
    CrossRefPubMed
  65. 65.↵
    1. Tyagi H,
    2. Apergis-Schoute AM,
    3. Akram H, et al
    . A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive-compulsive disorder: clinical and imaging evidence for dissociable effects. Biol Psychiatry 2019;85:726–34 doi:10.1016/j.biopsych.2019.01.017 pmid:30853111
    CrossRefPubMed
  66. 66.↵
    1. Salanova V,
    2. Witt T,
    3. Worth R, et al
    . Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015;84:1017–25 doi:10.1212/WNL.0000000000001334 pmid:25663221
    Abstract/FREE Full Text
  67. 67.↵
    1. Lehtimaki K,
    2. Coenen VA,
    3. Goncalves Ferreira A, et al
    . The surgical approach to the anterior nucleus of thalamus in patients with refractory epilepsy: experience from the international multicenter registry (MORE). Neurosurgery 2019;84:141–50 doi:10.1093/neuros/nyy023 pmid:29554309
    CrossRefPubMed
  68. 68.
    1. Wu C,
    2. D'Haese P-F,
    3. Pallavaram S, et al
    . Variations in thalamic anatomy affect targeting in deep brain stimulation for epilepsy. Stereotact Funct Neurosurg 2016;94:387–96 doi:10.1159/000449009 pmid:27846633
    CrossRefPubMed
  69. 69.↵
    1. Grewal SS,
    2. Middlebrooks EH,
    3. Kaufmann TJ, et al
    . Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Neurosurg Focus 2018;45:E6 doi:10.3171/2018.4.FOCUS18147 pmid:30064328
    CrossRefPubMed
  70. 70.↵
    1. Wang YC,
    2. Grewal SS,
    3. Middlebrooks EH, et al
    . Targeting analysis of a novel parietal approach for deep brain stimulation of the anterior nucleus of the thalamus for epilepsy. Epilepsy Res 2019;153:1–6 doi:10.1016/j.eplepsyres.2019.03.010 pmid:30913474
    CrossRefPubMed
  71. 71.↵
    1. Yang L,
    2. Li H,
    3. Zhu L, et al
    . Localized shape abnormalities in the thalamus and pallidum are associated with secondarily generalized seizures in mesial temporal lobe epilepsy. Epilepsy Behav 2017;70:259–64 doi:10.1016/j.yebeh.2017.02.011 pmid:28427841
    CrossRefPubMed
  72. 72.↵
    1. Grewal SS,
    2. Middlebrooks EH,
    3. Okromelidze L, et al
    . Variability between direct and indirect targeting of the anterior nucleus of the thalamus. World Neurosurg 2020 Apr 14. [Epub ahead of print] doi:10.1016/j.wneu.2020.03.107 pmid:32302732
    CrossRefPubMed
  73. 73.↵
    1. Baydin S,
    2. Gungor A,
    3. Tanriover N, et al
    . Fiber tracts of the medial and inferior surfaces of the cerebrum. World Neurosurg 2017;98:34–49 doi:10.1016/j.wneu.2016.05.016 pmid:27184897
    CrossRefPubMed
  74. 74.↵
    1. Choi SH,
    2. Kim YB,
    3. Paek SH, et al
    . Papez circuit observed by in vivo human brain with 7.0T MRI super-resolution track density imaging and track tracing. Front Neuroanat 2019;13:17 doi:10.3389/fnana.2019.00017 pmid:30833891
    CrossRefPubMed
  75. 75.↵
    1. Guo W,
    2. Koo BB,
    3. Kim JH, et al
    . Defining the optimal target for anterior thalamic deep brain stimulation in patients with drug-refractory epilepsy. J Neurosurg 2020;1–10 doi:10.3171/2020.2.JNS193226 pmid:32384279
    CrossRefPubMed
  76. 76.↵
    1. Schaper F,
    2. Plantinga BR,
    3. Colon AJ, et al
    . Deep brain stimulation in epilepsy: a role for modulation of the mammillothalamic tract in seizure control? Neurosurgery 2020 May 18. [Epub ahead of print] doi:10.1093/neuros/nyaa141 pmid:32421806
    CrossRefPubMed
  77. 77.↵
    1. Kamali A,
    2. Zhang CC,
    3. Riascos RF, et al
    . Diffusion tensor tractography of the mammillothalamic tract in the human brain using a high spatial resolution DTI technique. Sci Rep 2018;8:5229 doi:10.1038/s41598-018-23452-w pmid:29588461
    CrossRefPubMed
  78. 78.↵
    1. Middlebrooks EH,
    2. Grewal SS,
    3. Stead M, et al
    . Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg Focus 2018;45:E7 doi:10.3171/2018.5.FOCUS18151 pmid:30064322
    CrossRefPubMed
  79. 79.↵
    1. Wang YC,
    2. Kremen V,
    3. Brinkmann BH, et al
    . Probing circuit of Papez with stimulation of anterior nucleus of the thalamus and hippocampal evoked potentials. Epilepsy Res 2020;159:106248 doi:10.1016/j.eplepsyres.2019.106248 pmid:31841958
    CrossRefPubMed
  80. 80.↵
    1. Middlebrooks EH,
    2. Lin C,
    3. Okromelidze L, et al
    . Functional activation patterns of deep brain stimulation of the anterior nucleus of the thalamus. World Neurosurg 2020;136:357–63 doi:10.1016/j.wneu.2020.01.108 pmid:32001414
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (9)
American Journal of Neuroradiology
Vol. 41, Issue 9
1 Sep 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E.H. Middlebrooks, R.A. Domingo, T. Vivas-Buitrago, L. Okromelidze, T. Tsuboi, J.K. Wong, R.S. Eisinger, L. Almeida, M.R. Burns, A. Horn, R.J. Uitti, R.E. Wharen, V.M. Holanda, S.S. Grewal
Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
American Journal of Neuroradiology Sep 2020, 41 (9) 1558-1568; DOI: 10.3174/ajnr.A6693

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
E.H. Middlebrooks, R.A. Domingo, T. Vivas-Buitrago, L. Okromelidze, T. Tsuboi, J.K. Wong, R.S. Eisinger, L. Almeida, M.R. Burns, A. Horn, R.J. Uitti, R.E. Wharen, V.M. Holanda, S.S. Grewal
American Journal of Neuroradiology Sep 2020, 41 (9) 1558-1568; DOI: 10.3174/ajnr.A6693
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Infratentorial Morphometry and Deep Brain Stimulation Outcome in Cervical Dystonia
  • Brain Imaging Phenotypes Associated With Polygenic Risk For Essential Tremor
  • Segregating the Frontal Cortex with Deep Brain Stimulation
  • Connectomic Basis for Tremor Control in Stereotactic Radiosurgical Thalamotomy
  • Safety Recommendations for Temporal Interference Stimulation in the Brain
  • Personalizing deep brain stimulation using advanced imaging sequences
  • White matter variability, cognition, and disorders: a systematic review
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire