Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Relationship between Glioblastoma Heterogeneity and Survival Time: An MR Imaging Texture Analysis

Y. Liu, X. Xu, L. Yin, X. Zhang, L. Li and H. Lu
American Journal of Neuroradiology September 2017, 38 (9) 1695-1701; DOI: https://doi.org/10.3174/ajnr.A5279
Y. Liu
aFrom the School of Biomedical Engineering (Y.L., X.P.X., L.L.Y., X.Z., H.B.L.), Fourth Military Medical University, Xi'an, Shaanxi, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Liu
X. Xu
aFrom the School of Biomedical Engineering (Y.L., X.P.X., L.L.Y., X.Z., H.B.L.), Fourth Military Medical University, Xi'an, Shaanxi, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Xu
L. Yin
aFrom the School of Biomedical Engineering (Y.L., X.P.X., L.L.Y., X.Z., H.B.L.), Fourth Military Medical University, Xi'an, Shaanxi, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Yin
X. Zhang
aFrom the School of Biomedical Engineering (Y.L., X.P.X., L.L.Y., X.Z., H.B.L.), Fourth Military Medical University, Xi'an, Shaanxi, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Zhang
L. Li
aFrom the School of Biomedical Engineering (Y.L., X.P.X., L.L.Y., X.Z., H.B.L.), Fourth Military Medical University, Xi'an, Shaanxi, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Li
H. Lu
bDepartment of Engineering Science and Physics (L.H.L.), City University of New York at College of Staten Island, Staten Island, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Lu
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ostrom QT,
    2. Gittleman H,
    3. Stetson L, et al
    . Epidemiology of gliomas. Cancer Treat Res 2015;163:1–14 doi:10.1007/978-3-319-12048-5_1 pmid:25468222
    CrossRefPubMed
  2. 2.↵
    1. Van Meir EG,
    2. Hadjipanayis CG,
    3. Norden AD, et al
    . Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010;60:166–93 doi:10.3322/caac.20069 pmid:20445000
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Smoll NR,
    2. Schaller K,
    3. Gautschi OP
    . Long-term survival of patients with glioblastoma multiforme (GBM). J Clin Neurosci 2013;20:670–75 doi:10.1016/j.jocn.2012.05.040 pmid:23352352
    CrossRefPubMed
  4. 4.↵
    1. Sottoriva A,
    2. Spiteri I,
    3. Piccirillo SG, et al
    . Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 2013;110:4009–14 doi:10.1073/pnas.1219747110 pmid:23412337
    Abstract/FREE Full Text
  5. 5.↵
    1. Bedard PL,
    2. Hansen AR,
    3. Ratain MJ, et al
    . Tumour heterogeneity in the clinic. Nature 2013;501:355–64 doi:10.1038/nature12627 pmid:24048068
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Kumar V,
    2. Gu Y,
    3. Basu S, et al
    . Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234–48 doi:10.1016/j.mri.2012.06.010 pmid:22898692
    CrossRefPubMed
  7. 7.↵
    1. Gillies RJ,
    2. Kinahan PE,
    3. Hricak H
    . Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–77 doi:10.1148/radiol.2015151169 pmid:26579733
    CrossRefPubMed
  8. 8.↵
    1. Kim JH,
    2. Ko ES,
    3. Lim Y, et al
    . Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes. Radiology 2017;282:665–75 doi:10.1148/radiol.2016160261 pmid:27700229
    CrossRefPubMed
  9. 9.↵
    1. Yoon SH,
    2. Park CM,
    3. Park SJ, et al
    . Tumor heterogeneity in lung cancer: assessment with dynamic contrast-enhanced MR imaging. Radiology 2016;280:940–48 doi:10.1148/radiol.2016151367 pmid:27031994
    CrossRefPubMed
  10. 10.↵
    1. Ng F,
    2. Kozarski R,
    3. Ganeshan B, et al
    . Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol 2013;82:342–48 doi:10.1016/j.ejrad.2012.10.023 pmid:23194641
    CrossRefPubMed
  11. 11.↵
    1. Verhaak RG,
    2. Hoadley KA,
    3. Purdom E, et al
    ; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98–110 doi:10.1016/j.ccr.2009.12.020 pmid:20129251
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Chaddad A,
    2. Tanougast C
    . Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients. Med Biol Eng Comput 2016;54:1707–18 doi:10.1007/s11517-016-1461-5 pmid:26960324
    CrossRefPubMed
  13. 13.↵
    1. Cui Y,
    2. Tha KK,
    3. Terasaka S, et al
    . Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016;278:546–53 doi:10.1148/radiol.2015150358 pmid:26348233
    CrossRefPubMed
  14. 14.↵
    1. Itakura H,
    2. Achrol AS,
    3. Mitchell LA, et al
    . Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2015;7:303ra138 doi:10.1126/scitranslmed.aaa7582 pmid:26333934
    Abstract/FREE Full Text
  15. 15.↵
    1. Molina D,
    2. Perez-Beteta J,
    3. Luque B, et al
    . Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival. Br J Radiol 2016 Jul 4. [Epub ahead of print] pmid:27319577
  16. 16.↵
    1. Simões R,
    2. van Cappellen van Walsum AM,
    3. Slump CH
    . Classification and localization of early-stage Alzheimer's disease in magnetic resonance images using a patch-based classifier ensemble. Neuroradiology 2014;56:709–21 doi:10.1007/s00234-014-1385-4 pmid:24948425
    CrossRefPubMed
  17. 17.↵
    1. Molina D,
    2. Pérez-Beteta J,
    3. Martínez-González A, et al
    . Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 2016;78:49–57 doi:10.1016/j.compbiomed.2016.09.011 pmid:27658261
    CrossRefPubMed
  18. 18.↵
    1. Tixier F,
    2. Hatt M,
    3. Le Rest CC, et al
    . Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 2012;53:693–700 doi:10.2967/jnumed.111.099127 pmid:22454484
    Abstract/FREE Full Text
  19. 19.↵
    1. Tang X
    . Texture information in run-length matrices. IEEE Trans Image Process 1998;7:1602–09 doi:10.1109/83.725367 pmid:18276225
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Just N
    . Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer 2014;111:2205–13 doi:10.1038/bjc.2014.512 pmid:25268373
    CrossRefPubMed
  21. 21.↵
    1. Haralick RM,
    2. Shanmugam K,
    3. Dinstein IH
    . Texture features for image classification. IEEE Trans Syst Man Cybern Syst 1973;smc-3:610–21 doi:10.1109/TSMC.1973.4309314
    CrossRef
  22. 22.↵
    1. Castellano G,
    2. Bonilha L,
    3. Li LM, et al
    . Texture analysis of medical images. Clin Radiol 2004;59:1061–69 doi:10.1016/j.crad.2004.07.008 pmid:15556588
    CrossRefPubMed
  23. 23.↵
    1. Galloway MM
    . Texture analysis using gray level run lengths. Computer Graphics and Image Processing 1975;4:172–79 doi:10.1016/S0146-664X(75)80008-6
    CrossRef
  24. 24.↵
    1. Xu X,
    2. Liu Y,
    3. Zhang X, et al
    . Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps. Abdom Radiol (NY) 2017 Feb 20. [Epub ahead of print] doi:10.1007/s00261-017-1079-6 pmid:28217825
    CrossRefPubMed
  25. 25.↵
    1. Kang Y,
    2. Choi SH,
    3. Kim YJ, et al
    . Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging: correlation with tumor grade. Radiology 2011;261:882–90 doi:10.1148/radiol.11110686 pmid:21969667
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Chang CC,
    2. Lin CJ
    . LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011;2:1–27 doi:10.1145/1961189.1961199
    CrossRef
  27. 27.↵
    1. Han F,
    2. Wang H,
    3. Zhang G, et al
    . Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging 2015;28:99–115 doi:10.1007/s10278-014-9718-8 pmid:25117512
    CrossRefPubMed
  28. 28.↵
    1. Song B,
    2. Zhang G,
    3. Lu H, et al
    . Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography. Int J Comput Assist Radiol Surg 2014;9:1021–31 doi:10.1007/s11548-014-0991-2 pmid:24696313
    CrossRefPubMed
  29. 29.↵
    1. Rakotomamonjy A
    . Variable selection using SVM-based criteria. J Mach Learn Res 2003;3:1357–70
    CrossRef
  30. 30.↵
    1. Zacharaki EI,
    2. Wang S,
    3. Chawla S, et al
    . Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 2009;62:1609–18 doi:10.1002/mrm.22147 pmid:19859947
    CrossRefPubMed
  31. 31.↵
    1. Zou J,
    2. Ji Q,
    3. Nagy G
    . A comparative study of local matching approach for face recognition. IEEE Trans Image Process 2007;16:2617–28 doi:10.1109/TIP.2007.904421 pmid:17926941
    CrossRefPubMed
  32. 32.↵
    1. Xu X,
    2. Zhang X,
    3. Tian Q, et al
    . Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI. Int J Comput Assist Radiol Surg 2017;12:645–56 doi:10.1007/s11548-017-1522-8 pmid:28110476
    CrossRefPubMed
  33. 33.↵
    1. Inda MM,
    2. Bonavia R,
    3. Seoane J
    . Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers (Basel) 2014;6:226–39 doi:10.3390/cancers6010226 pmid:24473088
    CrossRefPubMed
  34. 34.↵
    1. Yang Z,
    2. Tang LH,
    3. Klimstra DS
    . Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 2011;35:853–60 doi:10.1097/PAS.0b013e31821a0696 pmid:21566513
    CrossRefPubMed
  35. 35.↵
    1. Lerski RA,
    2. Straughan K,
    3. Schad LR, et al
    . MR image texture analysis: an approach to tissue characterization. Magn Reson Imaging 1993;11:873–87 doi:10.1016/0730-725X(93)90205-R pmid:8371643
    CrossRefPubMed
  36. 36.↵
    1. Fetit AE,
    2. Novak J,
    3. Peet AC, et al
    . Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 2015;28:1174–84 doi:10.1002/nbm.3353 pmid:26256809
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (9)
American Journal of Neuroradiology
Vol. 38, Issue 9
1 Sep 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Relationship between Glioblastoma Heterogeneity and Survival Time: An MR Imaging Texture Analysis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y. Liu, X. Xu, L. Yin, X. Zhang, L. Li, H. Lu
Relationship between Glioblastoma Heterogeneity and Survival Time: An MR Imaging Texture Analysis
American Journal of Neuroradiology Sep 2017, 38 (9) 1695-1701; DOI: 10.3174/ajnr.A5279

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Relationship between Glioblastoma Heterogeneity and Survival Time: An MR Imaging Texture Analysis
Y. Liu, X. Xu, L. Yin, X. Zhang, L. Li, H. Lu
American Journal of Neuroradiology Sep 2017, 38 (9) 1695-1701; DOI: 10.3174/ajnr.A5279
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • The pivotal role of sampling recurrent tumors in the precision care of patients with tumors of the central nervous system
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire