Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Current and Emerging Therapies in Multiple Sclerosis: Implications for the Radiologist, Part 2—Surveillance for Treatment Complications and Disease Progression

C. McNamara, G. Sugrue, B. Murray and P.J. MacMahon
American Journal of Neuroradiology September 2017, 38 (9) 1672-1680; DOI: https://doi.org/10.3174/ajnr.A5148
C. McNamara
aFrom the Departments of Radiology (C.M., G.S., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. McNamara
G. Sugrue
aFrom the Departments of Radiology (C.M., G.S., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Sugrue
B. Murray
bNeurology (B.M.), Mater Misericordiae University Hospital, Dublin, Ireland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Murray
P.J. MacMahon
aFrom the Departments of Radiology (C.M., G.S., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.J. MacMahon
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Traboulsee A,
    2. Simon JH,
    3. Stone L, et al
    . Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 2016;37:394–401 doi:10.3174/ajnr.A4539 pmid:26564433
    Abstract/FREE Full Text
  2. 2.↵
    1. Stangel M,
    2. Penner IK,
    3. Kallmann BA, et al
    . Towards the implementation of ‘no evidence of disease activity’ in multiple sclerosis treatment: the multiple sclerosis decision model. Ther Adv Neurol Disord 2015;8:3–13 doi:10.1177/1756285614560733 pmid:25584069
    CrossRefPubMed
  3. 3.↵
    1. Rudick RA,
    2. Lee JC,
    3. Simon J, et al
    . Significance of T2 lesions in multiple sclerosis: a 13-year longitudinal study. Ann Neurol 2006;60:236–42 doi:10.1002/ana.20883 pmid:16786526
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Wattjes MP,
    2. Steenwijk MD,
    3. Stangel M
    . MRI in the diagnosis and monitoring of multiple sclerosis: an update. Clin Neuroradiol 2015;25(suppl 2):157–65 doi:10.1007/s00062-015-0430-y pmid:26198879
    CrossRefPubMed
  5. 5.↵
    1. Sormani M,
    2. Rio J,
    3. Tintorè M, et al
    . Scoring treatment response in patients with relapsing multiple sclerosis. Mult Scler 2013;19:605–12 doi:10.1177/1352458512460605 pmid:23012253
    CrossRefPubMed
  6. 6.↵
    1. Sormani MP,
    2. Signori A,
    3. Stromillo ML, et al
    . Refining response to treatment as defined by the Modified Rio Score. Mult Scler 2013;19:1246–47 doi:10.1177/1352458513483892 pmid:23549435
    CrossRefPubMed
  7. 7.↵
    1. Freedman MS,
    2. Selchen D,
    3. Arnold DL, et al
    . Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can J Neurol Sci 2013;40:307–23 doi:10.1017/S0317167100014244 pmid:23603165
    CrossRefPubMed
  8. 8.↵
    1. Wattjes MP,
    2. Rovira À,
    3. Miller D, et al
    ; MAGNIMS study group. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol 2015;11:597–606 doi:0.1038/nrneurol.2015.157 pmid:26369511
    CrossRefPubMed
  9. 9.↵
    1. Wiendl H,
    2. Toyka KV,
    3. Rieckmann P, et al
    ; Multiple Sclerosis Therapy Consensus Group (MSTCG). Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J Neurol 2008;255:1449–63 doi:10.1007/s00415-008-0061-1 pmid:19005625
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Coyle PK
    . Switching therapies in multiple sclerosis. CNS Drugs 2013;27:239–47 doi:10.1007/s40263-013-0042-5 pmid:23508518
    CrossRefPubMed
  11. 11.↵
    1. Wattjes MP,
    2. Barkhof F
    . Diagnosis of natalizumab-associated progressive multifocal leukoencephalopathy using MRI. Cur Opin Neurol 2014;27:260–70 doi:10.1097/WCO.0000000000000099 pmid:24739400
    CrossRefPubMed
  12. 12.↵
    1. Rommer PS,
    2. Zettl UK,
    3. Kieseier B, et al
    . Requirement for safety monitoring for approved multiple sclerosis therapies: an overview. Clin Exp Immunol 2014;175:397–407 doi:10.1111/cei.12206 pmid:24102425
    CrossRefPubMed
  13. 13.↵
    1. van Oosten BW,
    2. Killestein J,
    3. Barkhof F, et al
    . PML in a patient treated with dimethyl fumarate from a compounding pharmacy. N Engl J Med 2013;368:1658–59 doi:10.1056/NEJMc1215357 pmid:23614604
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Arvin AM,
    2. Wolinsky JS,
    3. Kappos L, et al
    . Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol 2015;72:31–39 doi:10.1001/jamaneurol.2014.3065 pmid:25419615
    CrossRefPubMed
  15. 15.↵
    1. Fine AJ,
    2. Sorbello A,
    3. Kortepeter C, et al
    . Progressive multifocal leukoencephalopathy after natalizumab discontinuation. Ann Neurol 2014;75:108–15 doi:10.1002/ana.24051 pmid:24242357
    CrossRefPubMed
  16. 16.↵
    1. Wattjes MP,
    2. Killestein J
    . Progressive multifocal leukoencephalopathy after natalizumab discontinuation: few and true? Ann Neurol 2014;75:462 doi:10.1002/ana.24110 pmid:24442606
    CrossRefPubMed
  17. 17.↵
    1. Killestein J,
    2. Vennegoor A,
    3. van Golde AE, et al
    . PML-IRIS during fingolimod diagnosed after natalizumab discontinuation. Case Rep Neurol Med 2014;2014:307872 doi:10.1155/2014/307872 pmid:25506447
    CrossRefPubMed
  18. 18.↵
    1. Dubey D,
    2. Cano CA,
    3. Stüve O
    . Update on monitoring and adverse effects of approved second-generation disease-modifying therapies in relapsing forms of multiple sclerosis. Curr Opin Neurol 2016;29:278–85 doi:10.1097/WCO.0000000000000321 pmid:27027553
    CrossRefPubMed
  19. 19.↵
    1. Dong-Si T,
    2. Richman S,
    3. Wattjes MP, et al
    . Outcome and survival of asymptomatic PML in natalizumab-treated MS patients. Ann Clin Transl Neurol 2014;1:755–64 doi:10.1002/acn3.114 pmid:25493267
    CrossRefPubMed
  20. 20.↵
    1. Wattjes MP,
    2. Vennegoor A,
    3. Steenwijk MD, et al
    . MRI pattern in asymptomatic natalizumab-associated PML. J Neurol Neurosurg Psychiatry 2015;86:793–98 doi:10.1136/jnnp-2014-308630 pmid:25205744
    Abstract/FREE Full Text
  21. 21.↵
    1. Wattjes MP,
    2. Vennegoor A,
    3. Mostert J, et al
    . Diagnosis of asymptomatic natalizumab-associated PML: are we between a rock and a hard place? J Neurol 2014;261:1139–43 doi:10.1007/s00415-014-7336-5 pmid:24705790
    CrossRefPubMed
  22. 22.↵
    1. Richert N,
    2. Bloomgren G,
    3. Cadavid D, et al
    . Imaging findings for PML in natalizumab-treated MS patients. Mult Scler 2012;18(suppl 4):27. Oral 99 doi:10.1177/1352458512459018
    CrossRef
  23. 23.↵
    1. Phan-Ba R,
    2. Lommers E,
    3. Tshibanda L, et al
    . MRI preclinical detection and asymptomatic course of a progressive multifocal leucoencephalopathy (PML) under natalizumab therapy. J Neurol Neurosurg Psychiatry 2012;83:224–26 doi:10.1136/jnnp-2011-300511 pmid:22013244
    Abstract/FREE Full Text
  24. 24.↵
    1. Wattjes MP,
    2. Verhoeff L,
    3. Zentjens W, et al
    . Punctate lesion pattern suggestive of perivascular inflammation in acute natalizumab-associated progressive multifocal leukoencephalopathy: productive JC virus infection or preclinical PML-IRIS manifestation? J Neurol Neurosurg Psychiatry 2013;84:1176–77 doi:10.1136/jnnp-2013-304986 pmid:23695498
    FREE Full Text
  25. 25.↵
    1. Yousry TA,
    2. Pelletier D,
    3. Cadavid D, et al
    . Magnetic resonance imaging pattern in natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol 2012;72:779–87 doi:10.1002/ana.23676 pmid:23280794
    CrossRefPubMed
  26. 26.↵
    1. Gheuens S,
    2. Smith DR,
    3. Wang X, et al
    . Simultaneous PML-IRIS after discontinuation of natalizumab in a patient with MS. Neurology 2012;78:1390–93 doi:10.1212/WNL.0b013e318253d61e pmid:22517104
    Abstract/FREE Full Text
  27. 27.↵
    1. Hodel J,
    2. Outteryck O,
    3. Dubron C, et al
    . Asymptomatic progressive multifocal leukoencephalopathy associated with natalizumab: diagnostic precision with MR imaging. Radiology 2016;278:863–72 doi:10.1148/radiol.2015150673 pmid:26436861
    CrossRefPubMed
  28. 28.↵
    1. Wattjes MP,
    2. Richert ND,
    3. Killestein J, et al
    . The chameleon of neuroinflammation: magnetic resonance imaging characteristics of natalizumab-associated progressive multifocal leukoencephalopathy. Mult Scler 2013;19:1826–40 doi:10.1177/1352458513510224 pmid:24192217
    CrossRefPubMed
  29. 29.↵
    1. Honce JM,
    2. Nagae L,
    3. Nyberg E
    . Neuroimaging of natalizumab complications in multiple sclerosis: PML and other associated entities. Mult Scler Int 2015;2015:809252 doi:10.1155/2015/809252 pmid:26483978
    CrossRefPubMed
  30. 30.↵
    1. Kastrup O,
    2. Maschke M,
    3. Diener H, et al
    . Progressive multifocal leukoencephalopathy limited to the brain stem. Neuroradiology 2002;44:227–29 doi:10.1007/s00234-001-0714-6 pmid:11942377
    CrossRefPubMed
  31. 31.↵
    1. Mathew RM,
    2. Murnane M
    . MRI in PML: bilateral medullary lesions. Neurology 2004;63:2380 doi:10.1212/01.WNL.0000141860.97900.8A pmid:15623704
    CrossRefPubMed
  32. 32.↵
    1. Svensson PA,
    2. Larsson EM
    . Infratentorial progressive multifocal leucoencephalopathy (PML) in a patient with SLE (2008: 4b). Eur Radiol 2008;18:1526–28 doi:10.1007/s00330-007-0788-6 pmid:18560918
    CrossRefPubMed
  33. 33.↵
    1. Miyagawa M,
    2. Maeda M,
    3. Umino M, et al
    . Low signal intensity in U-fiber identified by susceptibility-weighted imaging in two cases of progressive multifocal leukoencephalopathy. J Neurol Sci 2014;344:198–202 doi:10.1016/j.jns.2014.06.018 pmid:24972818
    CrossRefPubMed
  34. 34.↵
    1. Hodel J,
    2. Outteryck O,
    3. Verclytte S, et al
    . Brain magnetic susceptibility changes in patients with natalizumab-associated progressive multifocal leukoencephalopathy. AJNR Am J Neuroradiol 2015;36:2296–302 doi:10.3174/ajnr.A4436 pmid:26316568
    Abstract/FREE Full Text
  35. 35.↵
    1. Clifford DB,
    2. De Luca A,
    3. DeLuca A, et al
    . Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol 2010;9:438–46 doi:10.1016/S1474-4422(10)70028-4 pmid:20298967
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Tan IL,
    2. McArthur JC,
    3. Clifford DB, et al
    . Immune reconstitution inflammatory syndrome in natalizumab-associated PML. Neurology 2011;77:1061–67 doi:10.1212/WNL.0b013e31822e55e7 pmid:21832229
    Abstract/FREE Full Text
  37. 37.↵
    1. Kleinschmidt-DeMasters BK,
    2. Miravalle A,
    3. Schowinsky J, et al
    . Update on PML and PML-IRIS occurring in multiple sclerosis patients treated with natalizumab. J Neuropathol Exp Neurol 2012;71:604–17 doi:10.1097/NEN.0b013e31825caf2c pmid:22710964
    CrossRefPubMed
  38. 38.↵
    1. Miravalle A,
    2. Jensen R,
    3. Kinkel RP
    . Immune reconstitution inflammatory syndrome in patients with multiple sclerosis following cessation of natalizumab therapy. Arch Neurol 2011;68:186–91 doi:10.1001/archneurol.2010.257 pmid:20937940
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Wattjes MP,
    2. Wijburg MT,
    3. Vennegoor A, et al
    ; Dutch-Belgian Natalizumab-associated PML study group. MRI characteristics of early PML-IRIS after natalizumab treatment in patients with MS. J Neurol Neurosurg Psychiatry 2016;87:879–84 doi:10.1136/jnnp-2015-311411 pmid:26369555
    Abstract/FREE Full Text
  40. 40.↵
    1. Wenning W,
    2. Haghikia A,
    3. Laubenberger J, et al
    . Treatment of progressive multifocal leukoencephalopathy associated with natalizumab. N Engl J Med 2009;361:1075–80 doi:10.1056/NEJMoa0810257 pmid:19741228
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Gheuens S,
    2. Ngo L,
    3. Wang X, et al
    . Metabolic profile of PML lesions in patients with and without IRIS: an observational study. Neurology 2012;79:1041–48 doi:10.1212/WNL.0b013e318268465b pmid:22914832
    Abstract/FREE Full Text
  42. 42.↵
    1. Prosperini L,
    2. Gallo V,
    3. Petsas N, et al
    . One-year MRI scan predicts clinical response to interferon beta in multiple sclerosis. Eur J Neurol 2009;16:1202–09 doi:10.1111/j.1468-1331.2009.02708.x pmid:19538207
    CrossRefPubMed
  43. 43.↵
    1. Río J,
    2. Castilló J,
    3. Rovira A, et al
    . Measures in the first year of therapy predict the response to interferon beta in MS. Mult Scler 2009;15:848–53 doi:10.1177/1352458509104591 pmid:19542263
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Rovira A,
    2. Auger C,
    3. Alonso J
    . Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther Adv Neurol Disord 2013;6:298–310 doi:10.1177/1756285613484079 pmid:23997815
    CrossRefPubMed
  45. 45.↵
    1. Simon JH,
    2. Bermel RA,
    3. Rudick RA
    . Simple MRI metrics contribute to optimal care of the patient with multiple sclerosis. AJNR Am J Neuroradiol 2014;35:831–32 doi:10.3174/ajnr.A3937 pmid:24699092
    FREE Full Text
  46. 46.↵
    1. Sormani MP,
    2. Bonzano L,
    3. Roccatagliata L, et al
    . Magnetic resonance imaging as a potential surrogate for relapses in multiple sclerosis: a meta-analytic approach. Ann Neurol 2009;65:268–75 doi:10.1002/ana.21606 pmid:19334061
    CrossRefPubMed
  47. 47.↵
    1. Romeo M,
    2. Martinelli V,
    3. Perego M, et al
    . Brain MRI activity after disease-modifying treatment may predict disability progression after 5 years in relapsing remitting multiple sclerosis patients. In: Proceedings of the 5th Joint Triennial Congress of the European and Americas Committees for Treatment and Research in Multiple Sclerosis, Amsterdam, the Netherlands. October 19–22, 2011; abstract 29
  48. 48.↵
    1. Río J,
    2. Nos C,
    3. Tintoré M, et al
    . Defining the response to interferon-beta in relapsing-remitting multiple sclerosis patients. Ann Neurol 2006;59:344–52 doi:10.1002/ana.20740 pmid:16437558
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Río J,
    2. Rovira A,
    3. Tintoré M, et al
    . Relationship between MRI lesion activity and response to IFN-beta in relapsing-remitting multiple sclerosis patients. Mult Scler 2008;14:479–84 doi:10.1177/1352458507085555 pmid:18562504
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Rio J,
    2. Comabella M,
    3. Montalban X
    . Predicting responders to therapies for multiple sclerosis. Nat Rev Neurol 2009;5:553–60 doi:10.1038/nrneurol.2009.139 pmid:19794514
    CrossRefPubMed
  51. 51.↵
    1. Tomassini V,
    2. Paolillo A,
    3. Russo P, et al
    . Predictors of long-term clinical response to interferon beta therapy in relapsing multiple sclerosis. J Neurol 2006;253:287–93 doi:10.1007/s00415-005-0979-5 pmid:16151600
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Fisniku LK,
    2. Brex PA,
    3. Altmann DR, et al
    . Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 2008;131:808–17 doi:10.1093/brain/awm329 pmid:18234696
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Goodin DS,
    2. Traboulsee A,
    3. Knappertz V, et al
    ; 16-Year Long Term Follow-up Study Investigators. Relationship between early clinical characteristics and long term disability outcomes: 16-year cohort study (follow-up) of the pivotal interferon β-1b trial in multiple sclerosis. J Neurol Neurosurg Psychiatry 2012;83:282–87 doi:10.1136/jnnp-2011-301178 pmid:22193561
    Abstract/FREE Full Text
  54. 54.↵
    1. Bermel RA,
    2. You X,
    3. Foulds P, et al
    . Predictors of long-term outcome in multiple sclerosis patients treated with interferon β. Ann Neurol 2013;73:95–103 doi:10.1002/ana.23758 pmid:23378325
    CrossRefPubMed
  55. 55.↵
    1. Sormani MP,
    2. Arnold DL,
    3. De Stefano N
    . Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol 2014;75:43–49 doi:10.1002/ana.24018 pmid:24006277
    CrossRefPubMed
  56. 56.↵
    1. Erbayat Altay E,
    2. Fisher E,
    3. Jones SE, et al
    . Reliability of classifying multiple sclerosis disease activity using magnetic resonance imaging in a multiple sclerosis clinic. JAMA Neurol 2013;70:338–44 doi:10.1001/2013.jamaneurol.211 pmid:23599930
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Vrenken H,
    2. Jenkinson M,
    3. Horsfield MA, et al
    ; MAGNIMS Study Group. Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. J Neurol 2013;260:2458–71 doi:10.1007/s00415-012-6762-5 pmid:23263472
    CrossRefPubMed
  58. 58.↵
    1. Michel L,
    2. Larochelle C,
    3. Prat A
    . Update on treatments in multiple sclerosis. Presse Med 2015;44(4 pt 2):e137–51 doi:10.1016/j.lpm.2015.02.008 pmid:25813102
    CrossRefPubMed
  59. 59.↵
    1. Havrdova E
    . Freedom from disease activity in multiple sclerosis. Neurology 2010;74(suppl 3):S3–7 doi:10.1212/WNL.0b013e3181dbb51c pmid:20421571
    Abstract/FREE Full Text
  60. 60.↵
    1. Giovannoni G,
    2. Turner B,
    3. Gnanapavan S, et al
    . Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Rel Disord 2015;4:329–33 doi:10.1016/j.msard.2015.04.006 pmid:26195051
    CrossRefPubMed
  61. 61.↵
    1. Río J
    . Any evident MRI T2 lesion activity should guide change of therapy in multiple sclerosis: no. Mult Scler 2015;21:132–33 doi:10.1177/1352458514565415 pmid:25583834
    CrossRefPubMed
  62. 62.↵
    1. Ziemssen T,
    2. Derfuss T,
    3. de Stefano N, et al
    . Optimizing treatment success in multiple sclerosis. J Neurol 2016;263:1053–65 doi:10.1007/s00415-015-7986-y pmid:26705122
    CrossRefPubMed
  63. 63.↵
    1. Dobson R,
    2. Rudick RA,
    3. Turner B, et al
    . Assessing treatment response to interferon-β: is there a role for MRI? Neurology 2014;82:248–54 doi:10.1212/WNL.0000000000000036 pmid:24336144
    Abstract/FREE Full Text
  64. 64.↵
    1. Prosperini L,
    2. Fanelli F,
    3. Pozzilli C
    . Long-term assessment of No Evidence of Disease Activity with natalizumab in relapsing multiple sclerosis. J Neurol Sci 2016;364:145–47 doi:10.1016/j.jns.2016.03.025 pmid:27084235
    CrossRefPubMed
  65. 65.↵
    1. Coyle PK
    . Switching algorithms: from one immunomodulatory agent to another. J Neurol 2008;255:44–50 doi:10.1007/s00415-008-1007-3 pmid:18317676
    CrossRefPubMed
  66. 66.↵
    1. Río J,
    2. Tintoré M,
    3. Sastre-Garriga J, et al
    . Change in the clinical activity of multiple sclerosis after treatment switch for suboptimal response. Eur J Neurol 2012;19:899–904 doi:10.1111/j.1468-1331.2011.03648.x pmid:22289050
    CrossRefPubMed
  67. 67.↵
    1. De Stefano N
    . Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 2010;74:1868–76 doi:10.1212/WNL.0b013e3181e24136 pmid:20530323
    Abstract/FREE Full Text
  68. 68.↵
    1. Fisher E,
    2. Lee JC,
    3. Nakamura K, et al
    . Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008;64:255–65 doi:10.1002/ana.21436 pmid:18661561
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Steenwijk MD,
    2. Daams M,
    3. Pouwels PJ, et al
    . What explains gray matter atrophy in long-standing multiple sclerosis? Radiology 2014;272:832–42 doi:10.1148/radiol.14132708 pmid:24761837
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Bergsland N,
    2. Laganà MM,
    3. Tavazzi E, et al
    . Corticospinal tract integrity is related to primary motor cortex thinning in relapsing-remitting multiple sclerosis. Mult Scler 2015;21:1771–80 doi:10.1177/1352458515576985 pmid:25791368
    CrossRefPubMed
  71. 71.↵
    1. De Stefano N,
    2. Airas L,
    3. Grigoriadis N, et al
    . Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 2014;28:147–56 doi:10.1007/s40263-014-0140-z pmid:24446248
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. Vidal-Jordana A,
    2. Sastre-Garriga J,
    3. Rovira A, et al
    . Treating relapsing-remitting multiple sclerosis: therapy effects on brain atrophy. J Neurol 2015;262:2617–26 doi:10.1007/s00415-015-7798-0 pmid:26041617
    CrossRefPubMed
  73. 73.↵
    1. Zivadinov R
    . Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology 2008;71:136–44 doi:10.1212/01.wnl.0000316810.01120.05 pmid:18606968
    Abstract/FREE Full Text
  74. 74.↵
    1. Enzinger C,
    2. Fazekas F,
    3. Matthews PM, et al
    . Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 2005;64:1704–11 doi:10.1212/01.WNL.0000161871.83614.BB pmid:15911795
    Abstract/FREE Full Text
  75. 75.↵
    1. Huppertz HJ,
    2. Kröll-Seger J,
    3. Klöppel S, et al
    . Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 2010;49:2216–24 doi:10.1016/j.neuroimage.2009.10.066 pmid:19878722
    CrossRefPubMedWeb of Science
  76. 76.↵
    1. Jacobsen C,
    2. Hagemeier J,
    3. Myhr KM, et al
    . Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J Neurol Neurosurg Psychiatry 2014;85:1109–15 doi:10.1136/jnnp-2013-306906 pmid:24554101
    Abstract/FREE Full Text
  77. 77.↵
    1. Miller DH,
    2. Soon D,
    3. Fernando KT, et al
    ; AFFIRM Investigators. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology 2007;68:1390–401 doi:10.1212/01.wnl.0000260064.77700.fd pmid:17452584
    Abstract/FREE Full Text
  78. 78.↵
    1. Radue EW,
    2. Stuart WH,
    3. Calabresi PA, et al
    ; SENTINEL Investigators. Natalizumab plus interferon beta-1a reduces lesion formation in relapsing multiple sclerosis. J Neurol Sci 2010;292:28–35 doi:10.1016/j.jns.2010.02.012 pmid:20236661
    CrossRefPubMed
  79. 79.↵
    1. Magraner M,
    2. Coret F,
    3. Casanova B
    . The relationship between inflammatory activity and brain atrophy in natalizumab treated patients. Eur J Neurol 2012;81:3485–90 doi:10.1016/j.ejrad.2012.01.028 pmid:22391507
    CrossRefPubMed
  80. 80.↵
    1. Radue EW,
    2. O'Connor P,
    3. Polman CH, et al
    ; FTY720 Research Evaluating Effects of Daily Oral Therapy in Multiple Sclerosis (FREEDOMS) Study Group. Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch Neurol 2012;69:1259–69 doi:10.1001/archneurol.2012.1051 pmid:22751847
    CrossRefPubMedWeb of Science
  81. 81.↵
    1. Kappos L,
    2. Traboulsee A,
    3. Constantinescu C, et al
    . Long-term subcutaneous interferon beta-1a therapy in patients with relapsing-remitting MS. Neurology 2006;67:944–53 doi:10.1212/01.wnl.0000237994.95410.ce pmid:17000959
    Abstract/FREE Full Text
  82. 82.↵
    1. Goodkin DE,
    2. Vanderburg-Medendorp S,
    3. Ross JT
    . The effect of repositioning error on serial magnetic resonance imaging scans. Arch Neurol 1993;50:569–70 pmid:8347222
    CrossRefPubMed
  83. 83.↵
    1. Tan IL,
    2. van Schijndel RA,
    3. Fazekas F, et al
    . Image registration and subtraction to detect active T (2) lesions in MS: an interobserver study. J Neurol 2002;249:767–73 doi:10.1007/s00415-002-0712-6 pmid:12111312
    CrossRefPubMedWeb of Science
  84. 84.↵
    1. Moraal B,
    2. Meier DS,
    3. Poppe PA, et al
    . Subtraction MR images in a multiple sclerosis multicenter clinical trial setting. Radiology 2009;250:506–14 doi:10.1148/radiol.2501080480 pmid:19037018
    CrossRefPubMed
  85. 85.↵
    1. Moraal B,
    2. Wattjes MP,
    3. Geurts JJ, et al
    . Improved detection of active multiple sclerosis lesions: 3D subtraction imaging. Radiology 2010;255:154–63 doi:10.1148/radiol.09090814 pmid:20308453
    CrossRefPubMedWeb of Science
  86. 86.↵
    1. Battaglini M,
    2. Rossi F,
    3. Grove RA, et al
    . Automated identification of brain new lesions in multiple sclerosis using subtraction images. J Magn Reson Imaging 2014;39:1543–49 doi:10.1002/jmri.24293 pmid:24987754
    CrossRefPubMed
  87. 87.↵
    1. Moraal B,
    2. van den Elskamp IJ,
    3. Knol DL, et al
    . Long-interval T2-weighted subtraction magnetic resonance imaging: a powerful new outcome measure in multiple sclerosis trials. Ann Neurol 2010;67:667–75 doi:10.1002/ana.21958 pmid:20437564
    CrossRefPubMed
  88. 88.↵
    1. Wattjes MP,
    2. Lutterbey GG,
    3. Gieseke J, et al
    . Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 2007;28:54–59 pmid:17213424
    Abstract/FREE Full Text
  89. 89.↵
    1. Sethi V,
    2. Yousry TA,
    3. Muhlert N, et al
    . Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J Neurol Neurosurg Psychiatry 2012;83:877–82 doi:10.1136/jnnp-2012-303023 pmid:22807559
    Abstract/FREE Full Text
  90. 90.↵
    1. de Kouchkovsky I,
    2. Fieremans E,
    3. Fleysher L, et al
    . Quantification of normal-appearing white matter tract integrity in multiple sclerosis: a diffusion kurtosis imaging study. J Neurol 2016;263:1146–55 doi:10.1007/s00415-016-8118-z pmid:27094571
    CrossRefPubMed
  91. 91.↵
    1. Testaverde L,
    2. Caporali L,
    3. Venditti E, et al
    . Diffusion tensor imaging applications in multiple sclerosis patients using 3T magnetic resonance: a preliminary study. Eur Radiol 2012;22:990–97 doi:10.1007/s00330-011-2342-9 pmid:22160194
    CrossRefPubMed
  92. 92.↵
    1. Klawiter EC
    . Current and new directions in MRI in multiple sclerosis. Continuum (Minneap Minn) 2013;19(4 multiple sclerosis):1058–73 doi:10.1212/01.CON.0000433283.00221.37 pmid:23917101
    CrossRefPubMed
  93. 93.↵
    1. Naismith RT
    . Increased diffusivity in acute multiple sclerosis lesions predicts risk of black hole. Neurology 2010;74:1694–701 doi:10.1212/WNL.0b013e3181e042c4 pmid:20498437
    Abstract/FREE Full Text
  94. 94.↵
    1. Fox RJ,
    2. Sakaie K,
    3. Lee JC, et al
    . A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. AJNR Am J Neuroradiol 2012;33:695–700 doi:10.3174/ajnr.A2844 pmid:22173748
    Abstract/FREE Full Text
  95. 95.↵
    1. Werring DJ,
    2. Brassat D,
    3. Droogan AG, et al
    . The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 2000;123(pt 8):1667–76 doi:10.1093/brain/123.8.1667 pmid:10908196
    CrossRefPubMedWeb of Science
  96. 96.↵
    1. Rovira A,
    2. León A
    . MR in the diagnosis and monitoring of multiple sclerosis: an overview. Eur J Radiol 2008;67:409–14 doi:10.1016/j.ejrad.2008.02.044 pmid:18434066
    CrossRefPubMed
  97. 97.↵
    1. Chen JT,
    2. Collins DL,
    3. Atkins HL, et al
    ; Canadian MS/BMT Study Group. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 2008;63:254–62 doi:10.1002/ana.21302 pmid:18257039
    CrossRefPubMedWeb of Science
  98. 98.↵
    1. van den Elskamp IJ,
    2. Knol DL,
    3. Vrenken H, et al
    . Lesional magnetization transfer ratio: a feasible outcome for remyelinating treatment trials in multiple sclerosis. Mult Scler 2010;16:660–69 doi:10.1177/1352458510364630 pmid:20350960
    CrossRefPubMed
  99. 99.↵
    1. Simon B,
    2. Schmidt S,
    3. Lukas C, et al
    . Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol 2010;20:1675–83 doi:10.1007/s00330-009-1705-y pmid:20094887
    CrossRefPubMedWeb of Science
  100. 100.↵
    1. Nelson F,
    2. Poonawalla AH,
    3. Hou P, et al
    . Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging. AJNR Am J Neuroradiol 2007;28:1645–49 doi:10.3174/ajnr.A0645 pmid:17885241
    Abstract/FREE Full Text
  101. 101.↵
    1. Geurts JJ,
    2. Pouwels PJ,
    3. Uitdehaag BM, et al
    . Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 2005;236:254–60 doi:10.1148/radiol.2361040450 pmid:15987979
    CrossRefPubMedWeb of Science
  102. 102.↵
    1. Hagiwara A,
    2. Hori M,
    3. Yokoyama K, et al
    . Synthetic MRI in the detection of multiple sclerosis plaques. AJNR Am J Neuroradiol 2016 Dec 8. [Epub ahead of print] doi:10.3174/ajnr.A5012 pmid:27932506
    Abstract/FREE Full Text
  103. 103.↵
    1. Calabrese M,
    2. Rinaldi F,
    3. Seppi D, et al
    . Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study. Radiology 2011;261:891–98 doi:10.1148/radiol.11110195 pmid:22031708
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (9)
American Journal of Neuroradiology
Vol. 38, Issue 9
1 Sep 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Current and Emerging Therapies in Multiple Sclerosis: Implications for the Radiologist, Part 2—Surveillance for Treatment Complications and Disease Progression
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C. McNamara, G. Sugrue, B. Murray, P.J. MacMahon
Current and Emerging Therapies in Multiple Sclerosis: Implications for the Radiologist, Part 2—Surveillance for Treatment Complications and Disease Progression
American Journal of Neuroradiology Sep 2017, 38 (9) 1672-1680; DOI: 10.3174/ajnr.A5148

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Current and Emerging Therapies in Multiple Sclerosis: Implications for the Radiologist, Part 2—Surveillance for Treatment Complications and Disease Progression
C. McNamara, G. Sugrue, B. Murray, P.J. MacMahon
American Journal of Neuroradiology Sep 2017, 38 (9) 1672-1680; DOI: 10.3174/ajnr.A5148
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • A Siamese U-Transformer for change detection on MRI brain for multiple sclerosis, a model development and external validation study
  • A Radiomic "Warning Sign" of Progression on Brain MRI in Individuals with MS
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire