Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain

Discrimination between Glioma Grades II and III Using Dynamic Susceptibility Perfusion MRI: A Meta-Analysis

Anna F. Delgado and Alberto F. Delgado
American Journal of Neuroradiology July 2017, 38 (7) 1348-1355; DOI: https://doi.org/10.3174/ajnr.A5218
Anna F. Delgado
aFrom the Department of Clinical Neuroscience (Anna F.D.), Karolinska Institute, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anna F. Delgado
Alberto F. Delgado
bDepartment of Surgical Sciences (Alberto F.D.), Uppsala University, Uppsala, Sweden.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alberto F. Delgado
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    Abstract/FREE Full Text
  2. 2.↵
    1. Boxerman JL,
    2. Shiroishi MS,
    3. Ellingson BM, et al
    . Dynamic susceptibility contrast MR imaging in glioma: review of current clinical practice. Magn Reson Imaging Clin N Am 2016;24:649–70 doi:10.1016/j.mric.2016.06.005 pmid:27742108
    CrossRefPubMed
  3. 3.↵
    1. Law M,
    2. Young R,
    3. Babb J, et al
    . Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 2007;28:761–66 pmid:17416835
    Abstract/FREE Full Text
  4. 4.↵
    1. Hilario A,
    2. Ramos A,
    3. Perez-Nuñez A, et al
    . The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative grading of diffuse gliomas. AJNR Am J Neuroradiol 2012;33:701–07 doi:10.3174/ajnr.A2846 pmid:22207304
    Abstract/FREE Full Text
  5. 5.↵
    1. Wang XC,
    2. Zhang H,
    3. Tan Y, et al
    . Combined value of susceptibility-weighted and perfusion-weighted imaging in assessing WHO grade for brain astrocytomas. J Magn Reson Imaging 2014;39:1569–74 doi:10.1002/jmri.24312 pmid:24987755
    CrossRefPubMed
  6. 6.↵
    1. Caulo M,
    2. Panara V,
    3. Tortora D, et al
    . Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 2014;272:494–503 doi:10.1148/radiol.14132040 pmid:24661247
    CrossRefPubMed
  7. 7.↵
    1. Law M,
    2. Yang S,
    3. Wang H, et al
    . Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003;24:1989–98 pmid:14625221
    Abstract/FREE Full Text
  8. 8.↵
    1. Park MJ,
    2. Kim HS,
    3. Jahng GH, et al
    . Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 2009;30:1402–08 doi:10.3174/ajnr.A1593 pmid:19369602
    Abstract/FREE Full Text
  9. 9.↵
    1. Van Cauter S,
    2. De Keyzer F,
    3. Sima DM, et al
    . Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro Oncol 2014;16:1010–21 doi:10.1093/neuonc/not304 pmid:24470551
    Abstract/FREE Full Text
  10. 10.↵
    1. Kim H,
    2. Choi SH,
    3. Kim JH, et al
    . Gliomas: application of cumulative histogram analysis of normalized cerebral blood volume on 3 T MRI to tumor grading. PLoS One 2013;8:e63462 doi:10.1371/journal.pone.0063462 pmid:23704910
    CrossRefPubMed
  11. 11.↵
    1. Emblem KE,
    2. Scheie D,
    3. Due-Tonnessen P, et al
    . Histogram analysis of MR imaging-derived cerebral blood volume maps: combined glioma grading and identification of low-grade oligodendroglial subtypes. AJNR Am J Neuroradiol 2008;29:1664–70 doi:10.3174/ajnr.A1182 pmid:18583405
    Abstract/FREE Full Text
  12. 12.↵
    1. Di Costanzo A,
    2. Pollice S,
    3. Trojsi F, et al
    . Role of perfusion-weighted imaging at 3 Tesla in the assessment of malignancy of cerebral gliomas [In English, Italian]. Radiol Med 2008;113:134–43 doi:10.1007/s11547-008-0232-2 pmid:18338133
    CrossRefPubMed
  13. 13.↵
    1. Law M,
    2. Young R,
    3. Babb J, et al
    . Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2006;27:1975–82 pmid:17032878
    Abstract/FREE Full Text
  14. 14.↵
    1. Caseiras GB,
    2. Chheang S,
    3. Babb J, et al
    . Relative cerebral blood volume measurements of low-grade gliomas predict patient outcome in a multi-institution setting. Eur J Radiol 2010;73:215–20 doi:10.1016/j.ejrad.2008.11.005 pmid:19201123
    CrossRefPubMed
  15. 15.↵
    1. Nasseri M,
    2. Gahramanov S,
    3. Netto JP, et al
    . Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question. Neuro Oncol 2014;16:1146–54 doi:10.1093/neuonc/not328 pmid:24523362
    Abstract/FREE Full Text
  16. 16.↵
    1. Hu LS,
    2. Kelm Z,
    3. Korfiatis P, et al
    . Impact of software modeling on the accuracy of perfusion MRI in glioma. AJNR Am J Neuroradiol 2015;36:2242–49 doi:10.3174/ajnr.A4451 pmid:26359151
    Abstract/FREE Full Text
  17. 17.↵
    1. Louis DN,
    2. Perry A,
    3. Reifenberger G, et al
    . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–20 doi:10.1007/s00401-016-1545-1 pmid:27157931
    CrossRefPubMed
  18. 18.↵
    1. Usinskiene J,
    2. Ulyte A,
    3. Bjornerud A, et al
    . Optimal differentiation of high- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology 2016;58:339–50 doi:10.1007/s00234-016-1642-9 pmid:26767528
    CrossRefPubMed
  19. 19.↵
    1. Crocetti E,
    2. Trama A,
    3. Stiller C, et al
    . Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer 2012;48:1532–42 doi:10.1016/j.ejca.2011.12.013 pmid:22227039
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Kelly PJ,
    2. Daumas-Duport C,
    3. Kispert DB, et al
    . Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987;66:865–74 doi:10.3171/jns.1987.66.6.0865 pmid:3033172
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Catalaa I,
    2. Henry R,
    3. Dillon WP, et al
    . Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed 2006;19:463–75 doi:10.1002/nbm.1059 pmid:16763973
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Cuccarini V,
    2. Erbetta A,
    3. Farinotti M, et al
    . Advanced MRI may complement histological diagnosis of lower grade gliomas and help in predicting survival. J Neurooncol 2016;126:279–88 doi:10.1007/s11060-015-1960-5 pmid:26468137
    CrossRefPubMed
  23. 23.↵
    1. Nguyen TB,
    2. Cron GO,
    3. Perdrizet K, et al
    . Comparison of the diagnostic accuracy of DSC- and dynamic contrast-enhanced MRI in the preoperative grading of astrocytomas. AJNR Am J Neuroradiol 2015;36:2017–22 doi:10.3174/ajnr.A4398 pmid:26228886
    Abstract/FREE Full Text
  24. 24.↵
    1. Saito T,
    2. Yamasaki F,
    3. Kajiwara Y, et al
    . Role of perfusion-weighted imaging at 3T in the histopathological differentiation between astrocytic and oligodendroglial tumors. Eur J Radiol 2012;81:1863–69 doi:10.1016/j.ejrad.2011.04.009 pmid:21543173
    CrossRefPubMed
  25. 25.↵
    1. Thomsen H,
    2. Steffensen E,
    3. Larsson EM
    . Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas. Acta Radiol 2012;53:95–101 doi:10.1258/ar.2011.110242 pmid:22114021
    CrossRefPubMed
  26. 26.↵
    1. Toyooka M,
    2. Kimura H,
    3. Uematsu H, et al
    . Tissue characterization of glioma by proton magnetic resonance spectroscopy and perfusion-weighted magnetic resonance imaging: glioma grading and histological correlation. Clin Imaging 2008;32:251–58 doi:10.1016/j.clinimag.2007.12.006 pmid:18603178
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Togao O,
    2. Hiwatashi A,
    3. Yamashita K, et al
    . Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol 2017;27:578–88 doi:10.1007/s00330-016-4328-0 pmid:27003139
    CrossRefPubMed
  28. 28.↵
    1. Moher D,
    2. Liberati A,
    3. Tetzlaff J, et al
    . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535 doi:10.1136/bmj.b2535 pmid:19622551
    FREE Full Text
  29. 29.↵
    1. McGrath TA,
    2. McInnes MD,
    3. Korevaar DA, et al
    . Meta-analyses of diagnostic accuracy in imaging journals: analysis of pooling techniques and their effect on summary estimates of diagnostic accuracy. Radiology 2016;281:78–85 doi:10.1148/radiol.2016152229 pmid:27082781
    CrossRefPubMed
  30. 30.↵
    1. Whiting PF,
    2. Rutjes AW,
    3. Westwood ME, et al
    . QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529–36 doi:10.7326/0003-4819-155-8-201110180-00009 pmid:22007046
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Higgins JP,
    2. Green S
    . Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0 (updated March 2011)Accessed September 6, 2016. The Cochrane Collaboration, 2011. http://handbook.cochrane.org/. Accessed September 6, 2016.
  32. 32.↵
    1. Hozo SP,
    2. Djulbegovic B,
    3. Hozo I
    . Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005;5:13 doi:10.1186/1471-2288-5-13 pmid:15840177
    CrossRefPubMed
  33. 33.↵
    1. Light RJ,
    2. Pillemer DB
    . Summing Up: The Science of Reviewing Research. Cambridge: Harvard University Press; 1984
  34. 34.↵
    1. Doebler P,
    2. Holling H
    . Meta-Analysis of Diagnostic Accuracy with mada. 2015. https://cran.r-project.org/web/packages/mada/vignettes/mada.pdf. Accessed September 6, 2016.
  35. 35.↵
    R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2010
  36. 36.↵
    Review Manager (RevMan). 5.3 ed. Copenhagen: The Nordic Cochrane Centre: The Cochrane Collaboration; 2014 http://www.medsci.cn/webeditor/uploadfile/201408/20140815214316360.pdf. Accessed September 6, 2016.
  37. 37.↵
    1. Falk A,
    2. Fahlström M,
    3. Rostrup E, et al
    . Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging: a histogram analysis approach. Neuroradiology 2014;56:1031–38 doi:10.1007/s00234-014-1426-z pmid:25204450
    CrossRefPubMed
  38. 38.↵
    1. Cairncross JG,
    2. Wang M,
    3. Jenkins RB, et al
    . Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 2014;32:783–90 doi:10.1200/JCO.2013.49.3726 pmid:24516018
    Abstract/FREE Full Text
  39. 39.↵
    1. van den Bent MJ,
    2. Brandes AA,
    3. Taphoorn MJ, et al
    . Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 2013;31:344–50 doi:10.1200/JCO.2012.43.2229 pmid:23071237
    Abstract/FREE Full Text
  40. 40.↵
    1. Eckel-Passow JE,
    2. Lachance DH,
    3. Molinaro AM, et al
    . Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 2015;372:2499–508 doi:10.1056/NEJMoa1407279 pmid:26061753
    CrossRefPubMed
  41. 41.↵
    1. Brat DJ,
    2. Verhaak RG,
    3. Aldape KD, et al
    ; Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015;372:2481–98 doi:10.1056/NEJMoa1402121 pmid:26061751
    CrossRefPubMed
  42. 42.↵
    1. Kiselev VG,
    2. Posse S
    . Analytical model of susceptibility-induced MR signal dephasing: effect of diffusion in a microvascular network. Magn Reson Med 1999;41:499–509 pmid:10204873
    CrossRefPubMed
  43. 43.↵
    1. Yablonskiy DA,
    2. Haacke EM
    . Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994;32:749–63 doi:10.1002/mrm.1910320610 pmid:7869897
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (7)
American Journal of Neuroradiology
Vol. 38, Issue 7
1 Jul 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Discrimination between Glioma Grades II and III Using Dynamic Susceptibility Perfusion MRI: A Meta-Analysis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Anna F. Delgado, Alberto F. Delgado
Discrimination between Glioma Grades II and III Using Dynamic Susceptibility Perfusion MRI: A Meta-Analysis
American Journal of Neuroradiology Jul 2017, 38 (7) 1348-1355; DOI: 10.3174/ajnr.A5218

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Discrimination between Glioma Grades II and III Using Dynamic Susceptibility Perfusion MRI: A Meta-Analysis
Anna F. Delgado, Alberto F. Delgado
American Journal of Neuroradiology Jul 2017, 38 (7) 1348-1355; DOI: 10.3174/ajnr.A5218
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Impact of 18F-FET PET/MRI on Clinical Management of Brain Tumor Patients
  • Prognostic Value of Preoperative MRI Metrics for Diffuse Lower-Grade Glioma Molecular Subtypes
  • MR Imaging Features of Anaplastic Pleomorphic Xanthoastrocytoma Mimicking High-Grade Astrocytoma
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Cerebral ADC Changes in Fabry Disease
  • ML for Glioma Molecular Subtype Prediction
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire