Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleWhite Paper
Open Access

Imaging Evidence and Recommendations for Traumatic Brain Injury: Advanced Neuro- and Neurovascular Imaging Techniques

M. Wintermark, P.C. Sanelli, Y. Anzai, A.J. Tsiouris and C.T. Whitlow on behalf of the American College of Radiology Head Injury Institute
American Journal of Neuroradiology February 2015, 36 (2) E1-E11; DOI: https://doi.org/10.3174/ajnr.A4181
M. Wintermark
aFrom the Division of Neuroradiology (M.W.), Stanford University, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.C. Sanelli
bDepartment of Radiology (P.C.S.), North Shore–LIJ Health System, Manhasset, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Anzai
cDepartment of Radiology (Y.A.), University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.J. Tsiouris
dDepartment of Radiology (A.J.T.), Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.T. Whitlow
eDepartment of Radiology and Translational Science Institute (C.T.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Faul M,
    2. Xu L,
    3. Wald M, et al
    . Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010
  2. 2.↵
    1. Marin JR,
    2. Weaver MD,
    3. Yealy DM, et al
    . Trends in visits for traumatic brain injury to emergency departments in the United States. JAMA 2014;311:1917–19
    CrossRefPubMed
  3. 3.↵
    1. Ilie G,
    2. Boak A,
    3. Adlaf EM, et al
    . Prevalence and correlates of traumatic brain injuries among adolescents. JAMA 2013;309:2550–52
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Gean AD
    . Brain Injury: Applications from War and Terrorism. Lippincott Williams & Wilkins; 2014
  5. 5.↵
    National Center for Injury Prevention and Control. Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem. Atlanta: Centers for Disease Control and Prevention; 2003
  6. 6.↵
    Centers for Disease Control and Prevention. Injury Prevention and Control: Traumatic Brain Injury. http://www.cdc.gov/traumaticbraininjury/. . Updated March 6, 2014Accessed October 30, 2014.
  7. 7.↵
    Congressional Budget Office. The Veterans Health Administration's Treatment of PTSD and Traumatic Brain Injury Among Recent Combat Veterans. http://www.cbo.gov/sites/default/files/cbofiles/attachments/02-09-PTSD.pdf. Accessed October 20, 2014. February 2012.
  8. 8.↵
    1. Basser PJ,
    2. Mattiello J,
    3. LeBihan D
    . Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994;103:247–54
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Davenport ND,
    2. Lim KO,
    3. Armstrong MT, et al
    . Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage 2012;59:2017–24
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Mayer AR,
    2. Ling JM,
    3. Yang Z, et al
    . Diffusion abnormalities in pediatric mild traumatic brain injury. J Neurosci 2012;32:17961–69
    Abstract/FREE Full Text
  11. 11.↵
    1. Ling JM,
    2. Peña A,
    3. Yeo RA, et al
    . Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: a longitudinal perspective. Brain 2012;135:1281–92
    Abstract/FREE Full Text
  12. 12.↵
    1. Wilde EA,
    2. McCauley SR,
    3. Hunter JV, et al
    . Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology 2008;70:948–55
    CrossRef
  13. 13.↵
    1. Chu Z,
    2. Wilde EA,
    3. Hunter JV, et al
    . Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. AJNR Am J Neuroradiol 2010;31:340–46
    Abstract/FREE Full Text
  14. 14.↵
    1. Mayer AR,
    2. Ling J,
    3. Mannell MV, et al
    . A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology 2010;74:643–50
    CrossRef
  15. 15.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Johansen-Berg H, et al
    . Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487–505
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Bouix S,
    2. Pasternak O,
    3. Rathi Y, et al
    . Increased gray matter diffusion anisotropy in patients with persistent post-concussive symptoms following mild traumatic brain injury. PLoS One 2013;8:e66205
    CrossRefPubMed
  17. 17.↵
    1. Tuch DS,
    2. Reese TG,
    3. Wiegell MR, et al
    . High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 2002;48:577–82
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Jensen JH,
    2. Helpern JA
    . MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23:698–710
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Fieremans E,
    2. Benitez A,
    3. Jensen JH, et al
    . Novel white matter tract integrity metrics sensitive to Alzheimer disease progression. AJNR Am J Neuroradiol 2013;34:2105–12
    Abstract/FREE Full Text
  20. 20.↵
    1. Jensen JH,
    2. Helpern JA,
    3. Tabesh A
    . Leading non-Gaussian corrections for diffusion orientation distribution function. NMR Biomed 2014;27:202–11
    CrossRefPubMed
  21. 21.↵
    1. Wedeen VJ,
    2. Hagmann P,
    3. Tseng WY, et al
    . Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 2005;54:1377–86
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Tuch DS
    . Q-ball imaging. Magnet Reson Med 2004;52:1358–72
    CrossRef
  23. 23.↵
    1. Feinberg DA,
    2. Moeller S,
    3. Smith SM, et al
    . Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010;5:e15710
    CrossRefPubMed
  24. 24.↵
    1. Zhang H,
    2. Schneider T,
    3. Wheeler-Kingshott CA, et al
    . NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61:1000–16
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Tournier J,
    2. Calamante F,
    3. Connelly A
    . Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 2007;35:1459–72
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Xu D,
    2. Maier JK,
    3. King KF, et al
    . Prospective and retrospective high order eddy current mitigation for diffusion weighted echo planar imaging. Magnet Reson Med 2013;70:1293–305
    CrossRef
  27. 27.↵
    1. Wilde EA,
    2. Ramos MA,
    3. Yallampalli R, et al
    . Diffusion tensor imaging of the cingulum bundle in children after traumatic brain injury. Dev Neuropsychol 2010;35:333–51
    CrossRefPubMed
  28. 28.↵
    1. Arfanakis K,
    2. Haughton VM,
    3. Carew JD, et al
    . Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 2002;23:794–802
    Abstract/FREE Full Text
  29. 29.↵
    1. Kumar R,
    2. Gupta RK,
    3. Husain M, et al
    . Comparative evaluation of corpus callosum DTI metrics in acute mild and moderate traumatic brain injury: its correlation with neuropsychometric tests. Brain Inj 2009;23:675–85
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Miles L,
    2. Grossman RI,
    3. Johnson G, et al
    . Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj 2008;22:115–22
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Newcombe VF,
    2. Williams GB,
    3. Nortje J, et al
    . Concordant biology underlies discordant imaging findings: diffusivity behaves differently in grey and white matter post acute neurotrauma. Acta Neurochir Suppl 2008;102:247–51
    CrossRefPubMed
  32. 32.↵
    1. Newcombe VF,
    2. Williams GB,
    3. Nortje J, et al
    . Analysis of acute traumatic axonal injury using diffusion tensor imaging. Br J Neurosurg 2007;21:340–48
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Wozniak JR,
    2. Lim KO
    . Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci Biobehav Rev 2006;30:762–74
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Wozniak JR,
    2. Krach L,
    3. Ward E, et al
    . Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. Arch Clin Neuropsychol 2007;22:555–68
    Abstract/FREE Full Text
  35. 35.↵
    1. Aoki Y,
    2. Inokuchi R,
    3. Gunshin M, et al
    . Diffusion tensor imaging studies of mild traumatic brain injury: a meta-analysis. J Neurol Neurosurg Psychiatry 2012;83:870–76
    Abstract/FREE Full Text
  36. 36.↵
    1. Brandstack N,
    2. Kurki T,
    3. Tenovuo O
    . Quantitative diffusion-tensor tractography of long association tracts in patients with traumatic brain injury without associated findings at routine MR imaging. Radiology 2013;267:231–39
    CrossRefPubMed
  37. 37.↵
    1. McAllister TW,
    2. Ford JC,
    3. Ji S, et al
    . Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann Biomed Eng 2012;40:127–40
    CrossRefPubMed
  38. 38.↵
    1. Henry LC,
    2. Tremblay J,
    3. Tremblay S, et al
    . Acute and chronic changes in diffusivity measures after sports concussion. J Neurotrauma 2011;28:2049–59
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Bazarian JJ,
    2. Zhong J,
    3. Blyth B, et al
    . Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. J Neurotrauma 2007;24:1447–59
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Bazarian JJ,
    2. Zhu T,
    3. Blyth B, et al
    . Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magn Reson Imaging 2012;30:171–80
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Eierud C,
    2. Craddock RC,
    3. Fletcher S, et al
    . Neuroimaging after mild traumatic brain injury: review and meta-analysis. Neuroimage Clin 2014;4:283–94
    CrossRefPubMed
  42. 42.↵
    1. Hulkower M,
    2. Poliak D,
    3. Rosenbaum S, et al
    . A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am J Neuroradiol 2013;34:2064–74
    Abstract/FREE Full Text
  43. 43.↵
    1. Fakhran S,
    2. Yaeger K,
    3. Alhilali L
    . Symptomatic white matter changes in mild traumatic brain injury resemble pathologic features of early Alzheimer dementia. Radiology 2013;269:249–57
    CrossRefPubMed
  44. 44.↵
    1. Shenton M,
    2. Hamoda H,
    3. Schneiderman J, et al
    . A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 2012;6:137–92
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Niogi SN,
    2. Mukherjee P
    . Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil 2010;25:241–55
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Logothetis NK,
    2. Pauls J,
    3. Augath M, et al
    . Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:150–57
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Heeger DJ,
    2. Ress D
    . What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002;3:142–51
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Arthurs OJ,
    2. Boniface S
    . How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci 2002;25:27–31
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Attwell D,
    2. Iadecola C
    . The neural basis of functional brain imaging signals. Trends Neurosci 2002;25:621–25
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Nair DG
    . About being BOLD. Brain Res Brain Res Rev 2005;50:229–43
    CrossRefPubMed
  51. 51.↵
    1. Jantzen KJ
    . Functional magnetic resonance imaging of mild traumatic brain injury. J Head Trauma Rehab 2010;25:256–66
    CrossRefPubMed
  52. 52.↵
    1. Silver JM,
    2. McAllister TW,
    3. Yudofsky SC
    1. Freeman JR,
    2. Barth JT,
    3. Broshek DK, et al
    . Sports injuries. In: Silver JM, McAllister TW, Yudofsky SC, eds. Textbook of Traumatic Brain Injury. Washington, DC: American Psychiatric Publishing Inc; 2005:453–76
  53. 53.↵
    1. Bullock R,
    2. Zauner A,
    3. Woodward JJ, et al
    . Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 1998;89:507–18
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Garnett MR,
    2. Blamire AM,
    3. Rajagopalan B, et al
    . Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: a magnetic resonance spectroscopy study. Brain 2000;123(pt 7):1403–09
    Abstract/FREE Full Text
  55. 55.↵
    1. Hattingen E,
    2. Raab P,
    3. Franz K, et al
    . Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 2008;50:759–67
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Inglese M,
    2. Li BS,
    3. Rusinek H, et al
    . Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis. Magn Reson Med 2003;50:190–95
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Muñoz Maniega S,
    2. Cvoro V,
    3. Armitage PA, et al
    . Choline and creatine are not reliable denominators for calculating metabolite ratios in acute ischemic stroke. Stroke 2008;39:2467–69
    Abstract/FREE Full Text
  58. 58.↵
    1. Gasparovic C,
    2. Yeo R,
    3. Mannell M, et al
    . Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. J Neurotrauma 2009;26:1635–43
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Danielsen ER,
    2. Michaelis T,
    3. Ross BD
    . Three methods of calibration in quantitative proton MR spectroscopy. J Magn Reson B 1995;106:287–91
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Jansen JF,
    2. Backes WH,
    3. Nicolay K, et al
    . 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 2006;240:318–32
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Provencher SW
    . Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993;30:672–79
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Holshouser BA,
    2. Ashwal S,
    3. Luh GY, et al
    . Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology 1997;202:487–96
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. Horská A,
    2. Kaufmann WE,
    3. Brant LJ, et al
    . In vivo quantitative proton MRSI study of brain development from childhood to adolescence. J Magn Reson Imaging 2002;15:137–43
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Kreis R,
    2. Ernst T,
    3. Ross BD
    . Development of the human brain: in-vivo quantification of metabolite and water-content with proton magnetic-resonance spectroscopy. Magnet Reson Med 1993;30:424–37
    CrossRef
  65. 65.↵
    1. Kreis R,
    2. Hofmann L,
    3. Kuhlmann B, et al
    . Brain metabolite composition during early human brain development as measured by quantitative in vivo H-1 magnetic resonance spectroscopy. Magnet Reson Med 2002;48:949–58
    CrossRef
  66. 66.↵
    1. Pouwels PJW,
    2. Brockmann K,
    3. Kruse B, et al
    . Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999;46:474–85
    CrossRefPubMedWeb of Science
  67. 67.↵
    1. Ross BD,
    2. Ernst T,
    3. Kreis R, et al
    . 1H MRS in acute traumatic brain injury. J Magn Reson Imaging 1998;8:829–40
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Shutter L,
    2. Tong KA,
    3. Holshouser BA
    . Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction. J Neurotrauma 2004;21:1693–705
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Cohen BA,
    2. Inglese M,
    3. Rusinek H, et al
    . Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury. AJNR Am J Neuroradiol 2007;28:907–13
    Abstract/FREE Full Text
  70. 70.↵
    1. Govindaraju V,
    2. Gauger GE,
    3. Manley GT, et al
    . Volumetric proton spectroscopic imaging of mild traumatic brain injury. AJNR Am J Neuroradiol 2004;25:730–37
    Abstract/FREE Full Text
  71. 71.↵
    1. Henry LC,
    2. Tremblay S,
    3. Boulanger Y, et al
    . Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J Neurotrauma 2010;27:65–76
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. Henry LC,
    2. Tremblay S,
    3. Leclerc S, et al
    . Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol 2011;11:105
    CrossRefPubMed
  73. 73.↵
    1. Sarmento E,
    2. Moreira P,
    3. Brito C, et al
    . Proton spectroscopy in patients with post-traumatic headache attributed to mild head injury. Headache 2009;49:1345–52
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Vagnozzi R,
    2. Signoretti S,
    3. Cristofori L, et al
    . Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 2010;133:3232–42
    Abstract/FREE Full Text
  75. 75.↵
    1. Vagnozzi R,
    2. Signoretti S,
    3. Tavazzi B, et al
    . Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes—part III. Neurosurgery 2008;62:1286–95; discussion 1295–96
    CrossRefPubMedWeb of Science
  76. 76.↵
    1. Govind V,
    2. Gold S,
    3. Kaliannan K, et al
    . Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma 2010;27:483–96
    CrossRefPubMed
  77. 77.↵
    1. Kirov I,
    2. Fleysher L,
    3. Babb JS, et al
    . Characterizing ‘mild’ in traumatic brain injury with proton MR spectroscopy in the thalamus: initial findings. Brain Inj 2007;21:1147–54
    CrossRefPubMedWeb of Science
  78. 78.↵
    1. Maugans TA,
    2. Farley C,
    3. Altaye M, et al
    . Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics 2012;129:28–37
    Abstract/FREE Full Text
  79. 79.↵
    1. George EO,
    2. Roys S,
    3. Sours C, et al
    . Longitudinal and prognostic evaluation of mild traumatic brain injury: a 1H-magnetic resonance spectroscopy study. J Neurotrauma 2014;31:1018–28
    CrossRefPubMed
  80. 80.↵
    1. Cecil KM,
    2. Hills EC,
    3. Sandel ME, et al
    . Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg 1998;88:795–801
    CrossRefPubMedWeb of Science
  81. 81.↵
    1. Cimatti M
    . Assessment of metabolic cerebral damage using proton magnetic resonance spectroscopy in mild traumatic brain injury. J Neurosurg Sci 2006;50:83–88
    PubMed
  82. 82.↵
    1. Ashwal S,
    2. Holshouser B,
    3. Tong K, et al
    . Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res 2004;56:630–38
    CrossRefPubMedWeb of Science
  83. 83.↵
    1. Yeo RA,
    2. Gasparovic C,
    3. Merideth F, et al
    . A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. J Neurotrauma 2011;28:1–11
    CrossRefPubMedWeb of Science
  84. 84.↵
    1. Brooks WM,
    2. Stidley CA,
    3. Petropoulos H, et al
    . Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma 2000;17:629–40
    CrossRefPubMedWeb of Science
  85. 85.↵
    1. Friedman SD,
    2. Brooks WM,
    3. Jung RE, et al
    . Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 1999;52:1384–91
    CrossRef
  86. 86.↵
    1. Friedman SD,
    2. Brooks WM,
    3. Jung RE, et al
    . Proton MR spectroscopic findings correspond to neuropsychological function in traumatic brain injury. AJNR Am J Neuroradiol 1998;19:1879–85
    Abstract
  87. 87.↵
    1. Aaen GS,
    2. Holshouser BA,
    3. Sheridan C, et al
    . Magnetic resonance spectroscopy predicts outcomes for children with nonaccidental trauma. Pediatrics 2010;125:295–303
    Abstract/FREE Full Text
  88. 88.↵
    1. Ashwal S,
    2. Holshouser BA,
    3. Shu SK, et al
    . Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol 2000;23:114–25
    CrossRefPubMedWeb of Science
  89. 89.↵
    1. Babikian T,
    2. Freier MC,
    3. Ashwal S, et al
    . MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI. J Magn Reson Imaging 2006;24:801–11
    CrossRefPubMedWeb of Science
  90. 90.↵
    1. Brenner T,
    2. Freier MC,
    3. Holshouser BA, et al
    . Predicting neuropsychologic outcome after traumatic brain injury in children. Pediatr Neurol 2003;28:104–14
    CrossRefPubMedWeb of Science
  91. 91.↵
    1. Holshouser BA,
    2. Tong KA,
    3. Ashwal S
    . Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR Am J Neuroradiol 2005;26:1276–85
    Abstract/FREE Full Text
  92. 92.↵
    1. Hunter JV,
    2. Thornton RJ,
    3. Wang ZJ, et al
    . Late proton MR spectroscopy in children after traumatic brain injury: correlation with cognitive outcomes. AJNR Am J Neuroradiol 2005;26:482–88
    Abstract/FREE Full Text
  93. 93.↵
    1. Makoroff KL,
    2. Cecil KM,
    3. Care M, et al
    . Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury. Pediatr Radiol 2005;35:668–76
    CrossRefPubMedWeb of Science
  94. 94.↵
    1. Yeo RA,
    2. Phillips JP,
    3. Jung RE, et al
    . Magnetic resonance spectroscopy detects brain injury and predicts cognitive functioning in children with brain injuries. J Neurotrauma 2006;23:1427–35
    CrossRefPubMedWeb of Science
  95. 95.↵
    1. Holshouser BA,
    2. Tong KA,
    3. Ashwal S, et al
    . Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging 2006;24:33–40
    CrossRefPubMedWeb of Science
  96. 96.↵
    1. Garnett MR,
    2. Corkill RG,
    3. Blamire AM, et al
    . Altered cellular metabolism following traumatic brain injury: a magnetic resonance spectroscopy study. J Neurotrauma 2001;18:231–40
    CrossRefPubMedWeb of Science
  97. 97.↵
    1. Hari R,
    2. Forss N
    . Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 1999;354:1145–54
    Abstract/FREE Full Text
  98. 98.↵
    1. Hari R,
    2. Salmelin R
    . Magnetoencephalography: from SQUIDs to neuroscience—Neuroimage 20th anniversary special edition. Neuroimage 2012;61:386–96
    CrossRefPubMedWeb of Science
  99. 99.↵
    1. Hamalainen M,
    2. Hari R,
    3. Ilmoniemi RJ, et al
    . Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 1993;65:413–97
    CrossRefWeb of Science
  100. 100.↵
    1. Stam CJ
    . Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 2010;289:128–34
    CrossRefPubMedWeb of Science
  101. 101.↵
    1. Tormenti M,
    2. Krieger D,
    3. Puccio AM, et al
    . Magnetoencephalographic virtual recording: a novel diagnostic tool for concussion. Neurosurg Focus 2012;33:E9
    PubMed
  102. 102.↵
    1. Huang M-X,
    2. Nichols S,
    3. Robb A, et al
    . An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. Neuroimage 2012;61:1067–82
    CrossRefPubMedWeb of Science
  103. 103.↵
    1. Huang MX,
    2. Theilmann RJ,
    3. Robb A, et al
    . Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma 2009;26:1213–26
    CrossRefPubMedWeb of Science
  104. 104.↵
    1. Tarapore PE,
    2. Findlay AM,
    3. Lahue SC, et al
    . Resting state magnetoencephalography functional connectivity in traumatic brain injury. J Neurosurg 2013;118:1306–16
    CrossRefPubMed
  105. 105.↵
    1. Verweij BH,
    2. Muizelaar JP,
    3. Vinas FC
    . Hyperacute measurement of intracranial pressure, cerebral perfusion pressure, jugular venous oxygen saturation, and laser Doppler flowmetry, before and during removal of traumatic acute subdural hematoma. J Neurosurg 2001;95:569–72
    CrossRefPubMed
  106. 106.↵
    1. Adelson PD,
    2. Clyde B,
    3. Kochanek PM, et al
    . Cerebrovascular response in infants and young children following severe traumatic brain injury: a preliminary report. Pediatr Neurosurg 1997;26:200–07
    CrossRefPubMedWeb of Science
  107. 107.↵
    1. Nedd K,
    2. Sfakianakis G,
    3. Ganz W, et al
    . 99mTc-HMPAO SPECT of the brain in mild to moderate traumatic brain injury patients: compared with CT: a prospective study. Brain Inj 1993;7:469–79
    CrossRefPubMedWeb of Science
  108. 108.↵
    1. Kinuya K,
    2. Kakuda K,
    3. Nobata K, et al
    . Role of brain perfusion single-photon emission tomography in traumatic head injury. Nucl Med Commun 2004;25:333–37
    CrossRefPubMed
  109. 109.↵
    1. Gowda NK,
    2. Agrawal D,
    3. Bal C, et al
    . Technetium Tc-99m ethyl cysteinate dimer brain single-photon emission CT in mild traumatic brain injury: a prospective study. AJNR Am J Neuroradiol 2006;27:447–51
    Abstract/FREE Full Text
  110. 110.↵
    1. Pavel D,
    2. Jobe T,
    3. Devore-Best S, et al
    . Viewing the functional consequences of traumatic brain injury by using brain SPECT. Brain Cogn 2006;60:211–13
    PubMed
  111. 111.↵
    1. Shin YB,
    2. Kim SJ,
    3. Kim IJ, et al
    . Voxel-based statistical analysis of cerebral blood flow using Tc-99m ECD brain SPECT in patients with traumatic brain injury: group and individual analyses. Brain Inj 2006;20:661–67
    CrossRefPubMed
  112. 112.↵
    1. Uruma G,
    2. Hashimoto K,
    3. Abo M
    . A new method for evaluation of mild traumatic brain injury with neuropsychological impairment using statistical imaging analysis for Tc-ECD SPECT. Ann Nucl Med 2013;27:187–202
    CrossRefPubMed
  113. 113.↵
    1. Bavetta S,
    2. Nimmon CC,
    3. White J, et al
    . A prospective study comparing SPET with MRI and CT as prognostic indicators following severe closed head injury. Nucl Med Commun 1994;15:961–68
    CrossRefPubMed
  114. 114.↵
    1. Abu-Judeh HH,
    2. Parker R,
    3. Singh M, et al
    . SPET brain perfusion imaging in mild traumatic brain injury without loss of consciousness and normal computed tomography. Nucl Med Commun 1999;20:505–10
    CrossRefPubMedWeb of Science
  115. 115.↵
    1. Yamaki T,
    2. Imahori Y,
    3. Ohmori Y, et al
    . Cerebral hemodynamics and metabolism of severe diffuse brain injury measured by PET. J Nucl Med 1996;37:1166–70
    Abstract/FREE Full Text
  116. 116.↵
    1. Wintermark M,
    2. van Melle G,
    3. Schnyder P, et al
    . Admission perfusion CT: prognostic value in patients with severe head trauma. Radiology 2004;232:211–20
    CrossRefPubMed
  117. 117.↵
    1. Wintermark M,
    2. Chiolero R,
    3. van Melle G, et al
    . Relationship between brain perfusion computed tomography variables and cerebral perfusion pressure in severe head trauma patients. Crit Care Med 2004;32:1579–87
    CrossRefPubMedWeb of Science
  118. 118.↵
    1. Wintermark M,
    2. Chiolero R,
    3. Van Melle G, et al
    . Cerebral vascular autoregulation assessed by perfusion-CT in severe head trauma patients. J Neuroradiol 2006;33:27–37
    CrossRefPubMed
  119. 119.↵
    1. Metting Z,
    2. Rodiger LA,
    3. de Jong BM, et al
    . Acute cerebral perfusion CT abnormalities associated with posttraumatic amnesia in mild head injury. J Neurotrauma 2010;27:2183–89
    CrossRefPubMed
  120. 120.↵
    1. Soustiel JF,
    2. Mahamid E,
    3. Goldsher D, et al
    . Perfusion-CT for early assessment of traumatic cerebral contusions. Neuroradiology 2008;50:189–96
    CrossRefPubMed
  121. 121.↵
    1. Garnett MR,
    2. Blamire AM,
    3. Corkill RG, et al
    . Abnormal cerebral blood volume in regions of contused and normal appearing brain following traumatic brain injury using perfusion magnetic resonance imaging. J Neurotrauma 2001;18:585–93
    CrossRefPubMed
  122. 122.↵
    1. Liu W,
    2. Wang B,
    3. Wolfowitz R, et al
    . Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI. NMR Biomed 2013;26:651–63
    PubMed
  123. 123.↵
    1. Ge YL,
    2. Patel MB,
    3. Chen Q, et al
    . Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Inj 2009;23:666–74
    CrossRefPubMedWeb of Science
  124. 124.↵
    1. Kim J,
    2. Whyte J,
    3. Patel S, et al
    . Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma 2010;27:1399–411
    CrossRefPubMedWeb of Science
  125. 125.↵
    1. Peters AM,
    2. Gunasekera RD,
    3. Henderson BL, et al
    . Noninvasive measurement of blood flow and extraction fraction. Nucl Med Commun 1987;8:823–37
    CrossRefPubMedWeb of Science
  126. 126.↵
    1. Wintermark M,
    2. Thiran JP,
    3. Maeder P, et al
    . Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol 2001;22:905–14
    Abstract/FREE Full Text
  127. 127.↵
    1. Kudo K,
    2. Terae S,
    3. Katoh C, et al
    . Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with (H2O)-O-15 positron emission tomography. AJNR Am J Neuroradiol 2003;24:419–26
    Abstract/FREE Full Text
  128. 128.↵
    1. Latchaw RE,
    2. Yonas H,
    3. Pentheny SL, et al
    . Adverse reactions to xenon-enhanced CT cerebral blood flow determination. Radiology 1987;163:251–54
    CrossRefPubMedWeb of Science
  129. 129.↵
    1. Wintermark M,
    2. Reichhart M,
    3. Thiran JP, et al
    . Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002;51:417–32
    CrossRefPubMedWeb of Science
  130. 130.↵
    1. Wintermark M,
    2. Reichhart M,
    3. Cuisenaire O, et al
    . Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002;33:2025–31
    Abstract/FREE Full Text
  131. 131.↵
    1. Amorim RL,
    2. Bor-Seng-Shu E,
    3. Gattás GS, et al
    . Decompressive craniectomy and cerebral blood flow regulation in head injured patients: a case studied by perfusion CT. J Neuroradiol 2012;39:346–49
    CrossRefPubMed
  132. 132.↵
    1. Metting Z,
    2. Cerliani L,
    3. Rodiger LA, et al
    . Pathophysiological concepts in mild traumatic brain injury: diffusion tensor imaging related to acute perfusion CT imaging. PLoS One 2013;8:e64461
    CrossRefPubMed
  133. 133.↵
    1. Grossman EJ,
    2. Jensen JH,
    3. Babb JS, et al
    . Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and perfusion imaging study. AJNR Am J Neuroradiol 2013;34:951–57, S1–3
    Abstract/FREE Full Text
  134. 134.↵
    1. Stamatakis EA,
    2. Wilson JTL,
    3. Hadley DM, et al
    . SPECT imaging in head injury interpreted with statistical parametric mapping. J Nucl Med 2002;43:476–83
    Abstract/FREE Full Text
  135. 135.↵
    1. Lorberboym M,
    2. Lampl Y,
    3. Gerzon I, et al
    . Brain SPECT evaluation of amnestic ED patients after mild head trauma. Am J Emerg Med 2002;20:310–13
    CrossRefPubMedWeb of Science
  136. 136.↵
    1. Lewine JD,
    2. Davis JT,
    3. Bigler ED, et al
    . Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil 2007;22:141–55
    CrossRefPubMedWeb of Science
  137. 137.↵
    1. Chen SHA,
    2. Kareken DA,
    3. Fastenau PS, et al
    . A study of persistent post-concussion symptoms in mild head trauma using positron emission tomography. J Neurol Neurosurg Psychiatry 2003;74:326–32
    Abstract/FREE Full Text
  138. 138.↵
    1. Peskind ER,
    2. Petrie EC,
    3. Cross DJ, et al
    . Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war veterans with persistent post-concussive symptoms. Neuroimage 2011;54(suppl 1):S76–82
    CrossRefPubMedWeb of Science
  139. 139.↵
    1. Byrnes KR,
    2. Wilson CM,
    3. Brabazon F, et al
    . FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenergetics 2014;5:13
    PubMed
  140. 140.↵
    1. Raji CA,
    2. Tarzwell R,
    3. Pavel D, et al
    . Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review. PLoS One 2014;9:e91088
    CrossRefPubMed
  141. 141.↵
    1. Bigler ED
    . Neuroimaging biomarkers in mild traumatic brain injury (mTBI). Neuropsychol Rev 2013;23:169–209
    CrossRefPubMed
  142. 142.↵
    1. Hong YT,
    2. Veenith T,
    3. Dewar D, et al
    . Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol 2014;71:23–31
    CrossRefPubMed
  143. 143.↵
    1. Small GW,
    2. Kepe V,
    3. Siddarth P, et al
    . PET scanning of brain tau in retired National Football League players: preliminary findings. Am J Geriatr Psychiatry 2013;21:138–44
    CrossRefPubMedWeb of Science
  144. 144.↵
    1. Stein TD,
    2. Alvarez VE,
    3. McKee AC
    . Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res Ther 2014;6:4
    CrossRefPubMed
  145. 145.↵
    1. Gavett BE,
    2. Stern RA,
    3. McKee AC
    . Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med 2011;30:179–88, xi
    CrossRefPubMedWeb of Science
  146. 146.↵
    1. Shively S,
    2. Scher AI,
    3. Perl DP, et al
    . Dementia resulting from traumatic brain injury: what is the pathology? Arch Neurol 2012;69:1245–51
    PubMed
  147. 147.↵
    1. McKinney A,
    2. Ott F,
    3. Short J, et al
    . Angiographic frequency of blunt cerebrovascular injury in patients with carotid canal or vertebral foramen fractures on multidetector CT. Eur J Radiol 2007;62:385–93
    CrossRefPubMed
  148. 148.↵
    1. Franz RW,
    2. Willette PA,
    3. Wood MJ, et al
    . A systematic review and meta-analysis of diagnostic screening criteria for blunt cerebrovascular injuries. J Am Coll Surg 2012;214:313–27
    CrossRefPubMed
  149. 149.↵
    1. Biffl WL,
    2. Moore EE,
    3. Offner PJ, et al
    . Blunt carotid arterial injuries: implications of a new grading scale. J Trauma 1999;47:845–53
    CrossRefPubMedWeb of Science
  150. 150.↵
    1. Löhrer L,
    2. Vieth V,
    3. Nassenstein I, et al
    . Blunt cerebrovascular injuries in acute trauma care: a screening protocol. Eur Spine J 2012;21:837–43
    CrossRefPubMed
  151. 151.↵
    1. Cothren CC,
    2. Moore EE,
    3. Ray CE Jr., et al
    . Cervical spine fracture patterns mandating screening to rule out blunt cerebrovascular injury. Surgery 2007;141:76–82
    CrossRefPubMedWeb of Science
  152. 152.↵
    1. Kopelman TR,
    2. Leeds S,
    3. Berardoni NE, et al
    . Incidence of blunt cerebrovascular injury in low-risk cervical spine fractures. Am J Surg 2011;202:684–88; discussion 688–89
    CrossRefPubMed
  153. 153.↵
    1. Burlew CC,
    2. Biffl WL,
    3. Moore EE, et al
    . Blunt cerebrovascular injuries: redefining screening criteria in the era of noninvasive diagnosis. J Trauma Acute Care Surg 2012;72:330–35; discussion 336–37, quiz 539
    PubMed
  154. 154.↵
    1. Berne JD,
    2. Cook A,
    3. Rowe SA, et al
    . A multivariate logistic regression analysis of risk factors for blunt cerebrovascular injury. J Vasc Surg 2010;51:57–64
    CrossRefPubMedWeb of Science
  155. 155.↵
    1. Chokshi FH,
    2. Munera F,
    3. Rivas LA, et al
    . 64-MDCT angiography of blunt vascular injuries of the neck. AJR Am J Roentgenol 2011;196:W309–15
    CrossRefPubMed
  156. 156.↵
    1. Desai NK,
    2. Kang J,
    3. Chokshi FH
    . Screening CT angiography for pediatric blunt cerebrovascular injury with emphasis on the cervical “seatbelt sign.” AJNR Am J Neuroradiol 2014;35:1836–40
    Abstract/FREE Full Text
  157. 157.↵
    1. Dhillon RS,
    2. Barrios C,
    3. Lau C, et al
    . Seatbelt sign as an indication for four-vessel computed tomography angiogram of the neck to diagnose blunt carotid artery and other cervical vascular injuries. Am Surg 2013;79:1001–04
    PubMed
  158. 158.↵
    1. Fleck SK,
    2. Langner S,
    3. Baldauf J, et al
    . Blunt craniocervical artery injury in cervical spine lesions: the value of CT angiography. Acta Neurochir (Wien) 2010;152:1679–86
    CrossRefPubMed
  159. 159.↵
    1. Liang T,
    2. McLaughlin PD,
    3. Louis L, et al
    . Review of multidetector computed tomography angiography as a screening modality in the assessment of blunt vascular neck injuries. Can Assoc Radiol J 2013;64:130–39
    CrossRefPubMed
  160. 160.↵
    1. Patterson BO,
    2. Holt PJ,
    3. Cleanthis M, et al
    . Imaging vascular trauma. Br J Surg 2012;99:494–505
    CrossRefPubMed
  161. 161.↵
    1. Sliker CW
    . Blunt cerebrovascular injuries: imaging with multidetector CT angiography. Radiographics 2008;28:1689–708; discussion 1709–10
    CrossRefPubMedWeb of Science
  162. 162.↵
    1. Shiroff AM,
    2. Gale SC,
    3. Martin ND, et al
    . Penetrating neck trauma: a review of management strategies and discussion of the ‘No Zone’ approach. Am Surg 2013;79:23–29
    PubMed
  163. 163.↵
    1. Kansagra AP,
    2. Cooke DL,
    3. English JD, et al
    . Current trends in endovascular management of traumatic cerebrovascular injury. J Neurointerv Surg 2014;6:47–50
    Abstract/FREE Full Text
  164. 164.↵
    1. Hassan AE,
    2. Zacharatos H,
    3. Souslian F, et al
    . Long-term clinical and angiographic outcomes in patients with cervico-cranial dissections treated with stent placement: a meta-analysis of case series. J Neurotrauma 2012;29:1342–53
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (2)
American Journal of Neuroradiology
Vol. 36, Issue 2
1 Feb 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Imaging Evidence and Recommendations for Traumatic Brain Injury: Advanced Neuro- and Neurovascular Imaging Techniques
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Wintermark, P.C. Sanelli, Y. Anzai, A.J. Tsiouris, C.T. Whitlow
Imaging Evidence and Recommendations for Traumatic Brain Injury: Advanced Neuro- and Neurovascular Imaging Techniques
American Journal of Neuroradiology Feb 2015, 36 (2) E1-E11; DOI: 10.3174/ajnr.A4181

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Imaging Evidence and Recommendations for Traumatic Brain Injury: Advanced Neuro- and Neurovascular Imaging Techniques
M. Wintermark, P.C. Sanelli, Y. Anzai, A.J. Tsiouris, C.T. Whitlow
American Journal of Neuroradiology Feb 2015, 36 (2) E1-E11; DOI: 10.3174/ajnr.A4181
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Acknowledgments
    • Appendix
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Cortical iron-related markers are elevated in mild Traumatic Brain Injury: An individual-level quantitative susceptibility mapping study
  • Distribution of paramagnetic and diamagnetic cortical substrates following mild Traumatic Brain Injury: A depth- and curvature-based quantitative susceptibility mapping study
  • Advanced Neuroimaging and Mild Traumatic Brain Injury Litigation, Revisited
  • Towards Understanding Comprehensive Morphometric Changes and Its Correlation with Cognition and Exposure to Fighting in Active Professional Boxers
  • Early diagnosis of mortality using admission CT perfusion in severe traumatic brain injury patients (ACT-TBI): protocol for a prospective cohort study
  • Radiologic common data elements rates in pediatric mild traumatic brain injury
  • Quantification of Iodine Leakage on Dual-Energy CT as a Marker of Blood-Brain Barrier Permeability in Traumatic Hemorrhagic Contusions: Prediction of Surgical Intervention for Intracranial Pressure Management
  • Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know
  • Utility of Repeat Head CT in Patients with Blunt Traumatic Brain Injury Presenting with Small Isolated Falcine or Tentorial Subdural Hematomas
  • Neuroimaging of Sports Concussions
  • Trauma Imaging: A Literature Review
  • Neuroimaging Wisely
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • AI-Enabled Imaging Tools: Critical Appraisal
  • Amyloid Imaging Abnormalities in Alzheimer’s
  • The Updated Neuroradiology Milestones: Synapsing from 1.0 to 2.0
Show more WHITE PAPER

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire