Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

Molecular Imaging for Depressive Disorders

T.-S. Lee, S.Y. Quek and K.R.R. Krishnan
American Journal of Neuroradiology June 2014, 35 (6 suppl) S44-S54; DOI: https://doi.org/10.3174/ajnr.A3965
T.-S. Lee
aFrom the Duke-National University of Singapore Graduate Medical School, Singapore.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.Y. Quek
aFrom the Duke-National University of Singapore Graduate Medical School, Singapore.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.R.R. Krishnan
aFrom the Duke-National University of Singapore Graduate Medical School, Singapore.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Mankoff DA
    . A definition of molecular imaging. J Nucl Med 2007;48:18N, 21N
    FREE Full Text
  2. 2.↵
    1. Weissleder R,
    2. Mahmood U
    . Molecular imaging. Radiology 2001;219:316–33
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Kang JH,
    2. Chung JK
    . Molecular-genetic imaging based on reporter gene expression. J Nucl Med 2008;49:164S–179S
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Kessler RC,
    2. Berglund P,
    3. Demler O,
    4. et al
    . The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003;289:3095–105
    CrossRefPubMedWeb of Science
  5. 5.↵
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, Virginia: American Psychiatric Association; 2013
  6. 6.↵
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Arlington, Virginia: American Psychiatric Association; 2000
  7. 7.↵
    1. Charney DS,
    2. Sklar P,
    3. Buxbaum JD,
    4. et al.
    1. Duman RS
    . Molecular and cellular pathogenesis of depression and mechanisms for treatment response. In: Charney DS, Sklar P, Buxbaum JD, et al., eds. Neurobiology of Mental Illness. 4th ed. New York: Oxford University Press; 2013:425–37
  8. 8.↵
    1. Charney DS
    . Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 1998;59(suppl 14):11–14
  9. 9.↵
    1. Heninger GR,
    2. Delgado PL,
    3. Charney DS
    . The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 1996;29:2–11
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Jacobsen JP,
    2. Medvedev IO,
    3. Caron MG
    . The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci 2012;367:2444–59
    Abstract/FREE Full Text
  11. 11.↵
    1. Schlaepfer TE,
    2. Nemeroff CB
    1. Pariante CM,
    2. Nemeroff CB
    . Unipolar depression. In: Schlaepfer TE, Nemeroff CB , eds. Handbook of Clinical Neurology: Neurobiology of Psychiatric Disorders. Amsterdam, the Netherlands: Elsevier; 2012:239–49
  12. 12.↵
    1. Brambilla P,
    2. Perez J,
    3. Barale F,
    4. et al
    . GABAergic dysfunction in mood disorders. Mol Psychiatry 2003;8:721–37, 715
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Petty F
    . Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood test for manic depressive disease. Clin Chem 1994;40:296–302
    Abstract/FREE Full Text
  14. 14.↵
    1. Sanacora G,
    2. Mason GF,
    3. Rothman DL,
    4. et al
    . Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 2002;159:663–65
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Möhler H
    . The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012;62:42–53
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Maciag D,
    2. Hughes J,
    3. O'Dwyer G,
    4. et al
    . Reduced density of calbindin immuno-reactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry 2010;67:465–70
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Karolewicz B,
    2. Maciag D,
    3. O'Dwyer G,
    4. et al
    . Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol 2010;13:411–20
    Abstract/FREE Full Text
  18. 18.↵
    1. Serafini G,
    2. Pompili M,
    3. Innamorati M,
    4. et al
    . Pharmacological properties of glutamatergic drugs targeting NMDA receptors and their application in major depression. Curr Pharm Des 2013;19:1898–922
    CrossRefPubMed
  19. 19.↵
    1. Pfleiderer B,
    2. Michael N,
    3. Erfurth A,
    4. et al
    . Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 2003;122:185–92
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Petrie RXA,
    2. Reid IC,
    3. Stewart CA
    . The N-methyl-D-aspartate receptor, synaptic plasticity, and depressive disorder: a critical review. Pharmacol Ther 2000;87:11–25
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Agarwal N,
    2. Port JD,
    3. Bazzocchi M,
    4. et al
    . Update on the use of MR for assessment and diagnosis of psychiatric diseases. Radiology 2010;255:23–41
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Ng F,
    2. Berk M,
    3. Dean O,
    4. et al
    . Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 2008;11:851–76
    Abstract/FREE Full Text
  23. 23.↵
    1. Siwek M,
    2. Sowa-Kucma M,
    3. Dudek D,
    4. et al
    . Oxidative stress markers in affective disorders. Pharmacol Rep 2013;65:1558–71
    PubMed
  24. 24.↵
    1. Palta P,
    2. Samuel LJ,
    3. Miller ER,
    4. et al
    . Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom Med 2014;76:12–19
    Abstract/FREE Full Text
  25. 25.↵
    1. Yanik M,
    2. Erel O,
    3. Kati M
    . The relationship between potency of oxidative stress and severity of depression. Acta Neuropsychiatr 2004;16:200–03
    CrossRef
  26. 26.↵
    1. Chung CP,
    2. Schmidt D,
    3. Stein CM,
    4. et al
    . Increased oxidative stress in patients with depression and its relationship to treatment. Psychiatry Res 2013;206:213–16
    CrossRefPubMed
  27. 27.↵
    1. Michel TM,
    2. Frangou S,
    3. Thiemeyer D,
    4. et al
    . Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder: a postmortem study. Psychiatry Res 2007;151:145–50
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Kotan VO,
    2. Sarandol E,
    3. Kirhan E,
    4. et al
    . Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1284–90
    CrossRefPubMed
  29. 29.↵
    1. Sarandol A,
    2. Sarandol E,
    3. Eker SS,
    4. et al
    . Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 2007;22:67–73
    CrossRefPubMed
  30. 30.↵
    1. Drevets WC,
    2. Price JL,
    3. Simpson JR Jr.,
    4. et al
    . Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997;386:824–27
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Beyer JL,
    2. Krishnan KR
    . Volumetric brain imaging findings in mood disorders. Bipolar Disord 2002;4:89–104
    PubMed
  32. 32.↵
    1. Lee AL,
    2. Olge WO,
    3. Robert M
    . Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 2002;4:117–28
    CrossRef
  33. 33.↵
    1. Wang L,
    2. Hermens DF,
    3. Hickie IB,
    4. et al
    . A systematic review of resting-state functional-MRI studies in major depression. J Affect Disorders 2012;142:6–12
    CrossRefPubMed
  34. 34.↵
    1. Payne GS,
    2. Leach MO
    . Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 2006;(79 spec no 1):S16–26
  35. 35.↵
    1. van der Graaf M
    . In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J 2010;39:527–40
    CrossRefPubMed
  36. 36.↵
    1. Charney DS,
    2. Sklar P,
    3. Buxbaum JD,
    4. Nestler EJ
    1. Lu H,
    2. Yang Y,
    3. Liu P
    . Brain imaging methodologies. In: Charney DS, Sklar P, Buxbaum JD, Nestler EJ , eds. Neurobiology of Mental Illness. 4th ed. New York: Oxford University Press; 2013:199–211
  37. 37.↵
    1. Lyoo IK,
    2. Renshaw PF
    . Magnetic resonance spectroscopy: current and future applications in psychiatric research. Biol Psychiatry 2002;51:195–207
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Krishna KR,
    2. Doraiswamy PM
    1. Moore CM,
    2. Renshaw PF
    . Magnetic resonance spectroscopy studies of affective disorders. In: Krishna KR, Doraiswamy PM , eds. Brain Imaging in Clinical Psychiatry. New York: Marcel Decker; 1997:185–214
  39. 39.↵
    1. Bolo NR,
    2. Hodé Y,
    3. Nédélec JF,
    4. et al
    . Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology 2000;23:428–38
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Miner CM,
    2. Davidson JRT,
    3. Potts NLS,
    4. et al
    . Brain fluoxetine measurements using fluorine magnetic resonance spectroscopy in patients with social phobia. Biol Psychiatry 1995;38:696–98
    CrossRefPubMed
  41. 41.↵
    1. Strauss WL,
    2. Unis AS,
    3. Cowan C,
    4. et al
    . Fluorine magnetic resonance spectroscopy measurement of brain fluvoxamine and fluoxetine in pediatric patients treated for pervasive developmental disorders. Am J Psychiatry 2002;159:755–60
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Wolters M,
    2. Mohades SG,
    3. Hackeng TM,
    4. et al
    . Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy. Invest Radiol 2013;48:341–50
    CrossRefPubMed
  43. 43.↵
    1. Iosifescu DV,
    2. Renshaw PF
    . 31P-Magnetic resonance spectroscopy and thyroid hormones in major depressive disorder: toward a bioenergic mechanism in depression. Harv Rev Psychiatry 2003;11:51–63
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Soares JC,
    2. Krishnan KR,
    3. Keshavan MS
    . Nuclear magnetic resonance spectroscopy: new insights into the pathophysiology of mood disorders. Depression 1996;4:14–30
  45. 45.↵
    1. Yildiz A,
    2. Sachs GS,
    3. Dorer DJ,
    4. et al
    . 31P nuclear magnetic resonance spectroscopy findings in bipolar illness: a meta-analysis. Psychiatry Res 2001;106:181–91
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Volz HP,
    2. Rzanny R,
    3. Riehemann S,
    4. et al
    . 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiatry Clin Neurosci 1998;248:289–95
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Harper DG,
    2. Jensen JE,
    3. Ravichandran C,
    4. et al
    . Tissue-specific differences in brain phosphodiesters in late-life major depression. Am J Geriatr Psychiatry 2013 Jan 11. [Epub ahead of print]
  48. 48.↵
    1. Rauch SL,
    2. Renshaw PF
    . Clinical neuroimaging in psychiatry. Harv Rev Psychiatry 1995;2:297–312
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Kusumakar V,
    2. MacMaster FP,
    3. Gates L,
    4. et al
    . Left medial temporal cytosolic choline in early onset depression. Can J Psychiatry 2001;46:959–64
    PubMedWeb of Science
  50. 50.↵
    1. Yildiz-Yesiloglu A,
    2. Ankerst DP
    . Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 2006;147:1–25
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Griffin JL,
    2. Bollard M,
    3. Nicholson JK,
    4. et al
    . Spectral profiles of cultured neuronal and glial cells derived from HRMAS (1) HNMR spectroscopy. NMR Biomed 2002;15:375–84
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Wolfson M,
    2. Bersudsky Y,
    3. Hertz E,
    4. et al
    . A model of inositol compartmentation in astrocytes based upon efflux kinetics and slow inositol depletion after uptake inhibition. Neurochem Res 2000;25:977–82
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Frey R,
    2. Metzler D,
    3. Fischer P,
    4. et al
    . Myo-inositol in depressive and healthy subjects determined by frontal 1H-magnetic resonance spectroscopy at 1.5 Tesla. J Psychiatr Res 1998;32:411–20
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Rao NP,
    2. Venkatasubramanian G,
    3. Gangadhar BN
    . Proton magnetic resonance spectroscopy in depression. Indian J Psychiatry 2011;53:307–11
    CrossRefPubMed
  55. 55.↵
    1. Caverzasi E,
    2. Pichiecchio A,
    3. Poloni GU,
    4. et al
    . Magnetic resonance spectroscopy in the evaluation of treatment efficacy in unipolar major depressive disorder: a review of the literature. Funct Neurol 2012;27:13–22
    PubMed
  56. 56.↵
    1. Auer DP,
    2. Putz B,
    3. Kraft E,
    4. et al
    . Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 2000;47:305–13
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Mirza Y,
    2. Tang J,
    3. Russell A,
    4. et al
    . Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression. J Am Acad Child Adolesc Psychiatry 2004;43:341–48
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Michael N,
    2. Erfurth A,
    3. Ohrmann P,
    4. et al
    . Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 2003;33:1277–84
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Sanacora G,
    2. Gueorguieva R,
    3. Epperson CN,
    4. et al
    . Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004;61:705–13
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Yüksel C,
    2. Öngür D
    . Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 2010;68:785–94
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Sanacora G,
    2. Mason GF,
    3. Rothman DL,
    4. et al
    . Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 1999;56:1043–47
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Hasler G,
    2. van der Veen JW,
    3. Tumonis T,
    4. et al
    . Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007;64:193–200
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. Bhagwagar Z,
    2. Wylezinska M,
    3. Jezzard P,
    4. et al
    . Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol 2008;11:255–60
    Abstract/FREE Full Text
  64. 64.↵
    1. Mu J,
    2. Xie P,
    3. Yang ZS,
    4. et al
    . 1H magnetic resonance spectroscopy study of thalamus in treatment resistant depressive patients. Neurosci Lett 2007;425:49–52
    CrossRefPubMed
  65. 65.↵
    1. Vythilingam M,
    2. Charles HC,
    3. Tupler LA,
    4. et al
    . Focal and lateralized subcortical abnormalities in unipolar major depressive disorder: an automated multivoxel proton magnetic resonance spectroscopy study. Biol Psychiatry 2003;54:744–50
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Delgado y Palacios RD,
    2. Campo A,
    3. Henningsen K,
    4. et al
    . Magnetic resonance imaging and spectroscopy reveal differential hippocampal changes in anhedonic and resilient subtypes of the chronic mild stress rat model. Biol Psychiatry 2011;70:449–57
    CrossRefPubMedWeb of Science
  67. 67.↵
    1. Hemanth Kumar BS,
    2. Mishra SK,
    3. Rana P,
    4. et al
    . Neurodegenerative evidences during early onset of depression in CMS rats as detected by proton magnetic resonance spectroscopy at 7T. Behav Brain Res 2012;232:53–59
    CrossRefPubMed
  68. 68.↵
    1. Xi G,
    2. Hui J,
    3. Zhang Z,
    4. et al
    . Learning and memory alterations are associated with hippocampal N-acetylaspartate in a rat model of depression as measured by 1H-MRS. PLoS One 2011;6:e28686
    CrossRefPubMed
  69. 69.↵
    1. Czéh B,
    2. Michaelis T,
    3. Watanabe T,
    4. et al
    . Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 2001;98:12796–801
    Abstract/FREE Full Text
  70. 70.↵
    1. Perrine SA,
    2. Ghoddoussi F,
    3. Michaels MS,
    4. et al
    . Ketamine reverses stress-induced depression-like behavior and increased GABA levels in the anterior cingulate: an 11.7 T 1H-MRS study in rats. Prog Neuropsychopharmacol Biol Psychiatry 2013 Nov 15. [Epub ahead of print]
  71. 71.↵
    1. Renshaw PF,
    2. Parow AM,
    3. Hirashima F,
    4. et al
    . Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. Am J Psychiatry 2001;158:2048–55
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. Smith DF,
    2. Jakobsen S
    . Molecular tools for assessing human depression by positron emission tomography. Eur Neuropsychopharmacol 2009;19:611–28
    CrossRefPubMed
  73. 73.↵
    1. Smith DF,
    2. Jakobsen S
    . Molecular neurobiology of depression: PET findings on the elusive correlation with symptom severity. Front Psychiatry 2013;4:8
    PubMed
  74. 74.↵
    1. Savitz JB,
    2. Drevets WC
    . Neuroreceptor imaging in depression. Neurobiol Dis 2013;52:49–65
    CrossRefPubMed
  75. 75.↵
    1. Oquendo MA,
    2. Hastings RS,
    3. Huang YY,
    4. et al
    . Brain serotonin transporter binding in depressed patients with bipolar disorder using positron emission tomography. Arch Gen Psychiatry 2007;64:201–08
    CrossRefPubMedWeb of Science
  76. 76.↵
    1. Parsey RV,
    2. Hastings RS,
    3. Oquendo MA,
    4. et al
    . Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 2006;163:52–58
    CrossRefPubMedWeb of Science
  77. 77.↵
    1. Reivich M,
    2. Amsterdam JD,
    3. Brunswick DJ,
    4. et al
    . PET brain imaging with [11C](+)McN5652 shows increased serotonin transporter availability in major depression. J Affect Disord 2004;82:321–27
    CrossRefPubMedWeb of Science
  78. 78.↵
    1. Reimold M,
    2. Knobel A,
    3. Rapp MA,
    4. et al
    . Central serotonin transporter levels are associated with stress hormone response and anxiety. Psychopharmacology (Berl) 2011;213:563–72
    CrossRef
  79. 79.↵
    1. Reimold M,
    2. Batra A,
    3. Knobel A,
    4. et al
    . Anxiety is associated with reduced central serotonin transporter availability in unmedicated patients with unipolar major depression: a [11C]DASB PET study. Mol Psychiatry 2008;13:606–13, 55
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Cannon DM,
    2. Ichise M,
    3. Rollis D,
    4. et al
    . Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder. Biol Psychiatry 2007;62:870–77
    CrossRefPubMedWeb of Science
  81. 81.↵
    1. Cannon DM,
    2. Carson RE,
    3. Nugent AC,
    4. et al
    . Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry 2006;63:741–47
    CrossRefPubMedWeb of Science
  82. 82.↵
    1. Meyer JH,
    2. Houle S,
    3. Sagrati S,
    4. et al
    . Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry 2004;61:1271–79
    CrossRefPubMedWeb of Science
  83. 83.↵
    1. Meyer JH,
    2. Wilson AA,
    3. Sagrati S,
    4. et al
    . Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 2004;161:826–35
    CrossRefPubMedWeb of Science
  84. 84.↵
    1. Parsey RV,
    2. Ogden RT,
    3. Miller JM,
    4. et al
    . Higher serotonin 1A binding in a second major depression cohort: modeling and reference region considerations. Biol Psychiatry 2010;68:170–78
    CrossRefPubMedWeb of Science
  85. 85.↵
    1. Saijo T,
    2. Takano A,
    3. Suhara T,
    4. et al
    . Effect of electroconvulsive therapy on 5-HT1A receptor binding in patients with depression: a PET study with [11C]WAY 100635. Int J Neuropsychopharmacol 2010;13:785–91
    Abstract/FREE Full Text
  86. 86.↵
    1. Meltzer CC,
    2. Price JC,
    3. Mathis CA,
    4. et al
    . Serotonin 1A receptor binding and treatment response in late-life depression. Neuropsychopharmacology 2004;29:2258–65
    CrossRefPubMedWeb of Science
  87. 87.↵
    1. Hirvonen J,
    2. Karlsson H,
    3. Kajander J,
    4. et al
    . Decreased brain serotonin 5-HT1A receptor availability in medication-naïve patients with major depressive disorder: an in-vivo imaging study using PET and [carbonyl-11C]WAY-100635. Int J Neuropsychopharmacol 2008;11:465–76
    Abstract/FREE Full Text
  88. 88.↵
    1. Drevets WC,
    2. Thase ME,
    3. Moses-Kolko EL,
    4. et al
    . Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 2007;34:865–77
    CrossRefPubMedWeb of Science
  89. 89.↵
    1. Miller JM,
    2. Brennan KG,
    3. Ogden TR,
    4. et al
    . Elevated serotonin 1A binding in remitted major depressive disorder: evidence for a trait biological abnormality. Neuropsychopharmacology 2009;34:2275–84
    CrossRefPubMedWeb of Science
  90. 90.↵
    1. Sullivan GM,
    2. Ogden RT,
    3. Oquendo MA,
    4. et al
    . Positron emission tomography quantification of serotonin-1A receptor binding in medication-free bipolar depression. Biol Psychiatry 2009;66:223–30
    CrossRefPubMedWeb of Science
  91. 91.↵
    1. Parsey RV,
    2. Oquendo MA,
    3. Ogden RT,
    4. et al
    . Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biol Psychiatry 2006;59:106–13
    CrossRefPubMedWeb of Science
  92. 92.↵
    1. Mickey BJ,
    2. Ducci F,
    3. Hodgkinson CA,
    4. et al
    . Monoamine oxidase A genotype predicts human serotonin 1A receptor availability in vivo. J Neurosci 2008;28:11354–59
    Abstract/FREE Full Text
  93. 93.↵
    1. Mintun MA,
    2. Sheline YI,
    3. Moerlein SM,
    4. et al
    . Decreased hippocampal 5-HT2A receptor binding in major depressive disorder: in vivo measurement with [18F]altanserin positron emission tomography. Biol Psychiatry 2004;55:217–24
    CrossRefPubMedWeb of Science
  94. 94.↵
    1. Sheline YI,
    2. Mintun MA,
    3. Moerlein SM,
    4. et al
    . Greater loss of 5-HT(2A) receptors in midlife than in late life. Am J Psychiatry 2002;159:430–35
    CrossRefPubMedWeb of Science
  95. 95.↵
    1. Bragulat V,
    2. Paillere-Martinot ML,
    3. Artiges E,
    4. et al
    . Dopaminergic function in depressed patients with affective flattening or with impulsivity: [18F] fluoro-L-dopa positron emission tomography study with voxel-based analysis. Psychiatry Res 2007;154:115–24
    CrossRefPubMedWeb of Science
  96. 96.↵
    1. Dougherty DD,
    2. Bonab AA,
    3. Ottowitz WE,
    4. et al
    . Decreased striatal D1 binding as measured using PET and [11C]SCH 23,390 in patients with major depression with anger attacks. Depress Anxiety 2006;23:175–77
    CrossRefPubMed
  97. 97.↵
    1. Cannon DM,
    2. Klaver JM,
    3. Peck SA,
    4. et al
    . Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [(11)C]NNC-112. Neuropsychopharmacology 2009;34:1277–87
    CrossRefPubMedWeb of Science
  98. 98.↵
    1. Kano M,
    2. Fukudo S,
    3. Tashiro A,
    4. et al
    . Decreased histamine H1 receptor binding in the brain of depressed patients. Eur J Neurosci 2004;20:803–10
    CrossRefPubMedWeb of Science
  99. 99.↵
    1. Fujita M,
    2. Hines CS,
    3. Zoghbi SS,
    4. et al
    . Downregulation of brain phosphodiesterase type IV measured with (11)C-(R)-rolipram positron emission tomography in major depressive disorder. Biol Psychiatry 2012;72:548–54
    CrossRefPubMed
  100. 100.↵
    1. Meyer JH,
    2. Ginovart N,
    3. Boovariwala A,
    4. et al
    . Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry 2006;163:1594–602
    CrossRefPubMedWeb of Science
  101. 101.↵
    1. Montgomery AJ,
    2. Stokes P,
    3. Kitamura Y,
    4. et al
    . Extrastriatal D2 and striatal D2 receptors in depressive illness: pilot PET studies using [11C]FLB 457 and [11C]raclopride. J Affect Disord 2007;101:113–22
    CrossRefPubMed
  102. 102.↵
    1. Meyer JH,
    2. Ginovart N,
    3. Boovariwala A,
    4. et al
    . Elevated monoamine oxidase A levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 2006;63:1209–16
    CrossRefPubMedWeb of Science
  103. 103.↵
    1. Meyer JH,
    2. Wilson AA,
    3. Sagrati S,
    4. et al
    . Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Arch Gen Psychiatry 2009;66:1304–12
    CrossRefPubMedWeb of Science
  104. 104.↵
    1. Rosa-Neto P,
    2. Diksic M,
    3. Okazawa H,
    4. et al
    . Measurement of brain regional alpha-[11C]methyl-L-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch Gen Psychiatry 2004;61:556–63
    CrossRefPubMedWeb of Science
  105. 105.↵
    1. Bhagwagar Z,
    2. Rabiner EA,
    3. Sargent PA,
    4. et al
    . Persistent reduction in brain serotonin 1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Biol Psychiatry 2004;9:386–92
  106. 106.↵
    1. Yatham LN,
    2. Liddle PF,
    3. Lam RW,
    4. et al
    . Effect of electroconvulsive therapy on brain 5-HT(2) receptors in major depression. Br J Psychiatry 2010;196:474–79
    Abstract/FREE Full Text
  107. 107.↵
    1. Bhagwagar Z,
    2. Hinz R,
    3. Taylor M,
    4. et al
    . Increased 5-HT(2A) receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [11C]MDL 100,907. Am J Psychiatry 2006;163:1580–87
    CrossRefPubMedWeb of Science
  108. 108.↵
    1. Lanzenberger R,
    2. Baldinger P,
    3. Hahn A,
    4. et al
    . Global decrease of serotonin-1A receptor binding after electroconvulsive therapy in major depression measured by PET. Mol Psychiatry 2013;18:93–100
    CrossRefPubMedWeb of Science
  109. 109.↵
    1. Saijo T,
    2. Takano A,
    3. Suhara T,
    4. et al
    . Electroconvulsive therapy decreases dopamine D(2) receptor binding in the anterior cingulate in patients with depression: a controlled study using positron emission tomography with radioligand [11C]FLB 457. J Clin Psychiatry 2010;71:793–99
    CrossRefPubMedWeb of Science
  110. 110.↵
    1. Moses-Kolko EL,
    2. Price JC,
    3. Thase ME,
    4. et al
    . Measurement of 5-HT1A receptor binding in depressed adults before and after anti-depressant drug treatment using positron emission tomography and [11C]WAY-100635. Synapse 2007;61:523–30
    CrossRefPubMedWeb of Science
  111. 111.↵
    1. Miller JM,
    2. Oquendo MA,
    3. Ogden RT,
    4. et al
    . Serotonin transporter binding as a possible predictor of one-year remission in major depressive disorder. J Psychiatr Res 2008;42:1137–44
    CrossRefPubMed
  112. 112.↵
    1. Karlsson H,
    2. Hirvonen J,
    3. Kajander J,
    4. et al
    . Research letter: psychotherapy increases brain serotonin 5-HT1A receptors in patients with major depressive disorder. Psychol Med 2010;40:523–28
    CrossRefPubMed
  113. 113.↵
    1. Meyer JH,
    2. McMain S,
    3. Kennedy SH,
    4. et al
    . Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. Am J Psychiatry 2003;160:90–99
    CrossRefPubMedWeb of Science
  114. 114.↵
    1. Bhagwagar Z,
    2. Murthy N,
    3. Selvaraj S,
    4. et al
    . 5-HTT binding in recovered depressed patients and healthy volunteers: a positron emission tomography study with [11C]DASB. Am J Psychiatry 2007;164:1858–65
    CrossRefPubMedWeb of Science
  115. 115.↵
    1. Klumpers UM,
    2. Veltman DJ,
    3. Drent ML,
    4. et al
    . Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: preliminary results. Eur J Nucl Med Mol Imaging 2010;37:565–74
    CrossRefPubMed
  116. 116.↵
    1. Lagopoulos J,
    2. Hermens DF,
    3. Tobias-Webb J,
    4. et al
    . In vivo glutathione levels in young persons with bipolar disorder: a magnetic resonance spectroscopy study. J Psychiatr Res 2013;47:412–17
    CrossRefPubMed
  117. 117.
    1. Narayana PA,
    2. Johnston D,
    3. Flamig DP
    . In vivo proton magnetic resonance spectroscopy studies of human brain. Magn Reson Imaging 1991;9:303–08
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology
Vol. 35, Issue 6 suppl
1 Jun 2014
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Molecular Imaging for Depressive Disorders
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
T.-S. Lee, S.Y. Quek, K.R.R. Krishnan
Molecular Imaging for Depressive Disorders
American Journal of Neuroradiology Jun 2014, 35 (6 suppl) S44-S54; DOI: 10.3174/ajnr.A3965

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Molecular Imaging for Depressive Disorders
T.-S. Lee, S.Y. Quek, K.R.R. Krishnan
American Journal of Neuroradiology Jun 2014, 35 (6 suppl) S44-S54; DOI: 10.3174/ajnr.A3965
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire