Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

PET Approaches for Diagnosis of Dementia

K. Ishii
American Journal of Neuroradiology November 2014, 35 (11) 2030-2038; DOI: https://doi.org/10.3174/ajnr.A3695
K. Ishii
aFrom the Neurocognitive Disorders Center, Kinki University Hospital, Osaka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ishii K
    . Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 2002;16:515–25
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. McKhann GM,
    2. Knopman DS,
    3. Chertkow H, et al
    . The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263–69
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Albert MS,
    2. DeKosky ST,
    3. Dickson D, et al
    . The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:270–79
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. McKhann G,
    2. Drachman D,
    3. Folstein M, et al
    . Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939–44
    CrossRefPubMed
  5. 5.↵
    1. Ishii K,
    2. Sasaki M,
    3. Yamaji S, et al
    . Relatively preserved hippocampal glucose metabolism in mild Alzheimer's disease. Dement Geriatr Cogn Disord 1998;9:317–22
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Maldjian JA,
    2. Whitlow CT
    . Whither the hippocampus? FDG-PET hippocampal hypometabolism in Alzheimer disease revisited. AJNR Am J Neuroradiol 2012;33:1975–82
    Abstract/FREE Full Text
  7. 7.↵
    1. Ishii K,
    2. Soma T,
    3. Kono AK, et al
    . Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer's disease. J Nucl Med 2007;48:704–11
    Abstract/FREE Full Text
  8. 8.↵
    1. Mosconi L,
    2. Tsui WH,
    3. De Santi S, et al
    . Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005;64:1860–67
    CrossRef
  9. 9.↵
    1. Karow DS,
    2. McEvoy LK,
    3. Fennema-Notestine C, et al
    . Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology 2010;256:932–42
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Kawachi T,
    2. Ishii K,
    3. Sakamoto S, et al
    . Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer's disease. Eur J Nucl Med Mol Imaging 2006;33:801–09
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Matsunari I,
    2. Samuraki M,
    3. Chen WP, et al
    . Comparison of 18F-FDG PET and optimized voxel-based morphometry for detection of Alzheimer's disease: aging effect on diagnostic performance. J Nucl Med 2007;48:1961–70
    Abstract/FREE Full Text
  12. 12.↵
    1. Yuan Y,
    2. Gu ZX,
    3. Wei WS
    . Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J Neuroradiol 2009;30:404–10
    Abstract/FREE Full Text
  13. 13.↵
    1. Shaffer JL,
    2. Petrella JR,
    3. Sheldon FC, et al
    . Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 2013;266:583–91
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Choo IH,
    2. Ni R,
    3. Scholl M, et al
    . Combination of 18F-FDG PET and cerebrospinal fluid biomarkers as a better predictor of the progression to Alzheimer's disease in mild cognitive impairment patients. J Alzheimers Dis 2013;33:929–39
    CrossRefPubMed
  15. 15.↵
    1. Westman E,
    2. Muehlboeck JS,
    3. Simmons A
    . Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion. Neuroimage 2012;62:229–38
    CrossRefPubMed
  16. 16.↵
    1. Zhang D,
    2. Shen D
    . Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One 2012;7:e33182
    CrossRefPubMed
  17. 17.↵
    1. Hirono N,
    2. Hashimoto M,
    3. Yasuda M, et al
    . The effect of APOE epsilon4 allele on cerebral glucose metabolism in AD is a function of age at onset. Neurology 2002;58:743–50
    CrossRef
  18. 18.↵
    1. Drzezga A,
    2. Riemenschneider M,
    3. Strassner B, et al
    . Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology 2005;64:102–07
    CrossRef
  19. 19.↵
    1. Ossenkoppele R,
    2. van der Flier WM,
    3. Zwan MD, et al
    . Differential effect of APOE genotype on amyloid load and glucose metabolism in AD dementia. Neurology 2013;80:359–65
    CrossRef
  20. 20.↵
    1. Minoshima S,
    2. Koeppe RA,
    3. Frey KA, et al
    . Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images. J Nucl Med 1994;35:949–54
    Abstract/FREE Full Text
  21. 21.↵
    1. Minoshima S,
    2. Frey KA,
    3. Koeppe RA, et al
    . A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36:1238–48
    Abstract/FREE Full Text
  22. 22.↵
    1. Herholz K,
    2. Salmon E,
    3. Perani D, et al
    . Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002;17:302–16
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Ishii K,
    2. Kono AK,
    3. Sasaki H, et al
    . Fully automatic diagnostic system for early- and late-onset mild Alzheimer's disease using FDG PET and 3D-SSP. Eur J Nucl Med Mol Imaging 2006;33:575–83
    CrossRefPubMed
  24. 24.↵
    1. Kono AK,
    2. Ishii K,
    3. Sofue K, et al
    . Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer's disease using FDG-PET and 3D-SSP. Eur J Nucl Med Mol Imaging 2007;34:1490–97
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Uemura T,
    2. Ishii K,
    3. Miyamoto N, et al
    . Computer-assisted system for diagnosis of Alzheimer disease using data base-independent estimation and fluorodeoxyglucose-positron-emission tomography and 3D-stereotactic surface projection. AJNR Am J Neuroradiol 2011;32:556–59
    Abstract/FREE Full Text
  26. 26.↵
    1. Mevel K,
    2. Desgranges B,
    3. Baron JC, et al
    . Detecting hippocampal hypometabolism in mild cognitive impairment using automatic voxel-based approaches. Neuroimage 2007;37:18–25
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Klunk WE,
    2. Engler H,
    3. Nordberg A, et al
    . Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306–19
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Kudo Y,
    2. Okamura N,
    3. Furumoto S, et al
    . 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer's disease patients. J Nucl Med 2007;48:553–61
    Abstract/FREE Full Text
  29. 29.↵
    1. Lucignani G
    . Clinical applications of PET amyloid imaging: an update. Eur J Nucl Med Mol Imaging 2009;36:1185–90
    CrossRefPubMed
  30. 30.↵
    1. Choi SR,
    2. Golding G,
    3. Zhuang Z, et al
    . Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med 2009;50:1887–94
    Abstract/FREE Full Text
  31. 31.↵
    1. Cselényi Z,
    2. Jonhagen ME,
    3. Forsberg A, et al
    . Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med 2012;53:415–24
    Abstract/FREE Full Text
  32. 32.↵
    1. Jack CR Jr.,
    2. Knopman DS,
    3. Jagust WJ, et al
    . Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010;9:119–28
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Rabinovici GD,
    2. Furst AJ,
    3. Alkalay A, et al
    . Increased metabolic vulnerability in early-onset Alzheimer's disease is not related to amyloid burden. Brain 2010;133:512–28
    Abstract/FREE Full Text
  34. 34.↵
    1. Jack CR Jr.,
    2. Wiste HJ,
    3. Vemuri P, et al
    . Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain 2010;133:3336–48
    Abstract/FREE Full Text
  35. 35.↵
    1. Johnson KA,
    2. Minoshima S,
    3. Bohnen NI, et al
    . Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. J Nucl Med 2013;54:476–90
    Abstract/FREE Full Text
  36. 36.↵
    1. Johnson KA,
    2. Minoshima S,
    3. Bohnen NI, et al
    . Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement 2013;9:e-1–16
    CrossRef
  37. 37.
    1. McKeith IG,
    2. Dickson DW,
    3. Lowe J, et al
    . Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65:1863–72
    CrossRefPubMed
  38. 38.↵
    1. Albin RL,
    2. Minoshima S,
    3. D'Amato CJ, et al
    . Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology 1996;47:462–66
    CrossRef
  39. 39.↵
    1. Ishii K,
    2. Imamura T,
    3. Sasaki M, et al
    . Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer's disease. Neurology 1998;51:125–30
    CrossRef
  40. 40.↵
    1. Bohnen NI,
    2. Koeppe RA,
    3. Minoshima S, et al
    . Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 2011;52:848–55
    Abstract/FREE Full Text
  41. 41.↵
    1. McKeith I,
    2. O'Brien J,
    3. Walker Z, et al
    . Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007;6:305–13
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Treglia G,
    2. Cason E
    . Diagnostic performance of myocardial innervation imaging using MIBG scintigraphy in differential diagnosis between dementia with Lewy bodies and other dementias: a systematic review and a meta-analysis. J Neuroimaging 2012;22:111–17
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Shimada H,
    2. Shinotoh H,
    3. Hirano S, et al
    . Beta-amyloid in Lewy body disease is related to Alzheimer's disease-like atrophy. Mov Disord 2013;28:169–75
    CrossRefPubMed
  44. 44.↵
    1. Gomperts SN,
    2. Rentz DM,
    3. Moran E, et al
    . Imaging amyloid deposition in Lewy body diseases. Neurology 2008;71:903–10
    CrossRef
  45. 45.↵
    1. Gomperts SN,
    2. Locascio JJ,
    3. Marquie M, et al
    . Brain amyloid and cognition in Lewy body diseases. Mov Disord 2012;27:965–73
    CrossRefPubMed
  46. 46.↵
    1. Fujishiro H,
    2. Iseki E,
    3. Higashi S, et al
    . Distribution of cerebral amyloid deposition and its relevance to clinical phenotype in Lewy body dementia. Neurosci Lett 2010;486:19–23
    CrossRefPubMed
  47. 47.↵
    Clinical and neuropathological criteria for frontotemporal dementia; the Lund and Manchester Groups. J Neurol Neurosurg Psychiatry 1994;57:416–18
    FREE Full Text
  48. 48.↵
    1. Ishii K,
    2. Sakamoto S,
    3. Sasaki M, et al
    . Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 1998;39:1875–78
    Abstract/FREE Full Text
  49. 49.↵
    1. Kanda T,
    2. Ishii K,
    3. Uemura T, et al
    . Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 2008;35:2227–34
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Engler H,
    2. Santillo AF,
    3. Wang SX, et al
    . In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging 2008;35:100–06
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Rabinovici GD,
    2. Furst AJ,
    3. O'Neil JP, et al
    . 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2007;68:1205–12
    CrossRef
  52. 52.↵
    1. Juh R,
    2. Pae CU,
    3. Kim TS, et al
    . Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis. Neurosci Lett 2005;383:22–27
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Juh R,
    2. Kim J,
    3. Moon D, et al
    . Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur J Radiol 2004;51:223–33
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Klein RC,
    2. de Jong BM,
    3. de Vries JJ, et al
    . Direct comparison between regional cerebral metabolism in progressive supranuclear palsy and Parkinson's disease. Mov Disord 2005;20:1021–30
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Hosaka K,
    2. Ishii K,
    3. Sakamoto S, et al
    . Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 2002;199:67–71
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Hirono N,
    2. Ishii K,
    3. Sasaki M, et al
    . Features of regional cerebral glucose metabolism abnormality in corticobasal degeneration. Dement Geriatr Cogn Disord 2000;11:139–46
    CrossRefPubMed
  57. 57.↵
    1. Hashimoto M,
    2. Ishikawa M,
    3. Mori E, et al
    . Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 2010;7:18
    CrossRefPubMed
  58. 58.↵
    1. Jagust WJ,
    2. Friedland RP,
    3. Budinger TF
    . Positron emission tomography with [18F]fluorodeoxyglucose differentiates normal pressure hydrocephalus from Alzheimer-type dementia. J Neurol Neurosurg Psychiatry 1985;48:1091–96
    Abstract/FREE Full Text
  59. 59.↵
    1. Calcagni ML,
    2. Lavalle M,
    3. Mangiola A, et al
    . Early evaluation of cerebral metabolic rate of glucose (CMRglu) with 18F-FDG PET/CT and clinical assessment in idiopathic normal pressure hydrocephalus (INPH) patients before and after ventricular shunt placement: preliminary experience. Eur J Nucl Med Mol Imaging 2012;39:236–41
    CrossRefPubMed
  60. 60.↵
    1. Rinne JO,
    2. Wong DF,
    3. Wolk DA, et al
    . [18F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid beta detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies. Acta Neuropathol 2012;124:833–45
    CrossRefPubMed
  61. 61.↵
    1. Shin J,
    2. Kepe V,
    3. Barrio JR, et al
    . The merits of FDDNP-PET imaging in Alzheimer's disease. J Alzheimers Dis 2011;26(suppl 3):135–45
    PubMedWeb of Science
  62. 62.↵
    1. Fodero-Tavoletti MT,
    2. Okamura N,
    3. Furumoto S, et al
    . 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. Brain 2011;134:1089–100
    Abstract/FREE Full Text
  63. 63.↵
    1. Silverman DH,
    2. Gambhir SS,
    3. Huang HW, et al
    . Evaluating early dementia with and without assessment of regional cerebral metabolism by PET: a comparison of predicted costs and benefits. J Nucl Med 2002;43:253–66
    Abstract/FREE Full Text
  64. 64.↵
    1. Moulin-Romsee G,
    2. Maes A,
    3. Silverman D, et al
    . Cost-effectiveness of 18F-fluorodeoxyglucose positron emission tomography in the assessment of early dementia from a Belgian and European perspective. Eur J Neurol 2005;12:254–63
    CrossRefPubMedWeb of Science
  65. 65.
    1. Mathis CA,
    2. Wang Y,
    3. Holt DP, et al
    . Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003;46:2740–54
    CrossRefPubMedWeb of Science
  66. 66.
    1. Nyberg S,
    2. Jonhagen ME,
    3. Cselenyi Z, et al
    . Detection of amyloid in Alzheimer's disease with positron emission tomography using [11C]AZD2184. Eur J Nucl Med Mol Imaging 2009;36:1859–63
    CrossRefPubMed
  67. 67.
    1. Agdeppa ED,
    2. Kepe V,
    3. Liu J, et al
    . Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer's disease. J Neurosci 2001;21:RC189
    Abstract/FREE Full Text
  68. 68.
    1. Nelissen N,
    2. Van Laere K,
    3. Thurfjell L, et al
    . Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med 2009;50:1251–59
    Abstract/FREE Full Text
  69. 69.
    1. Rowe CC,
    2. Ackerman U,
    3. Browne W, et al
    . Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94–9172, a novel PET tracer: proof of mechanism. Lancet Neurol 2008;7:129–35
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (11)
American Journal of Neuroradiology
Vol. 35, Issue 11
1 Nov 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
PET Approaches for Diagnosis of Dementia
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K. Ishii
PET Approaches for Diagnosis of Dementia
American Journal of Neuroradiology Nov 2014, 35 (11) 2030-2038; DOI: 10.3174/ajnr.A3695

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
PET Approaches for Diagnosis of Dementia
K. Ishii
American Journal of Neuroradiology Nov 2014, 35 (11) 2030-2038; DOI: 10.3174/ajnr.A3695
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Synthesizing Images of Tau Pathology from Cross-modal Neuroimaging using Deep Learning
  • An Efficient Approach to Perform MR-Assisted PET Data Optimization in Simultaneous PET/MR Neuroimaging Studies
  • The Utility of Molecular Imaging for Investigating Patients with Visual Hallucinations
  • National Electrical Manufacturers Association and Clinical Evaluation of a Novel Brain PET/CT Scanner
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire