Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

Motion-Compensation Techniques in Neonatal and Fetal MR Imaging

C. Malamateniou, S.J. Malik, S.J. Counsell, J.M. Allsop, A.K. McGuinness, T. Hayat, K. Broadhouse, R.G. Nunes, A.M. Ederies, J.V. Hajnal and M.A. Rutherford
American Journal of Neuroradiology June 2013, 34 (6) 1124-1136; DOI: https://doi.org/10.3174/ajnr.A3128
C. Malamateniou
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
bDepartment of Medical Imaging Technology (C.M.), Technological Educational Institute of Athens, Athens, Greece
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.J. Malik
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.J. Counsell
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.M. Allsop
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.K. McGuinness
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Hayat
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Broadhouse
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.G. Nunes
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
bDepartment of Medical Imaging Technology (C.M.), Technological Educational Institute of Athens, Athens, Greece
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.M. Ederies
cInstitute of Biophysics and Biomedical Engineering (R.G.N.), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.V. Hajnal
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Rutherford
aFrom the Robert Steiner MRI Unit (C.M., S.J.M., S.J.C., J.M.A., A.K.M., T.H., K.B., R.G.N., J.V.H., M.A.R.), Imaging Sciences Department, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Rutherford MA
    . Magnetic resonance imaging of the fetal brain. Curr Opin Obstet Gynecol 2009;21:180–86
    CrossRefPubMed
  2. 2.↵
    1. Rutherford M,
    2. Malamateniou C,
    3. Zeka J,
    4. et al
    . MR imaging of the neonatal brain at 3 Tesla. Eur J Paediatr Neurol 2004;8:281–89
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Levine D,
    2. Hatabu H,
    3. Gaa J,
    4. et al
    . Fetal anatomy revealed with fast MR sequences. AJR Am J Roentgenol 1996;167:905–08
    PubMed
  4. 4.↵
    1. Levine D,
    2. Barnes PD,
    3. Sher S,
    4. et al
    . Fetal fast MR imaging: reproducibility, technical quality, and conspicuity of anatomy. Radiology 1998;206:549–54
    PubMedWeb of Science
  5. 5.↵
    1. Griffiths PD,
    2. Paley MN,
    3. Whitby EH
    . MR imaging of the fetal brain and spine: a maturing technology. Ann Acad Med Singapore 2003;32:483–89
    PubMed
  6. 6.↵
    1. Prayer D
    . Fetal MR. Eur J Radiol 2006;57:171
    CrossRefPubMed
  7. 7.↵
    1. Huppi PS,
    2. Inder TE
    . Magnetic resonance techniques in the evaluation of the perinatal brain: recent advances and future directions. Semin Neonatol 2001;6:195–210
    CrossRefPubMed
  8. 8.↵
    1. Higgins RD,
    2. Raju T,
    3. Edwards AD,
    4. et al
    . Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop. J Pediatr 2011;159:851–58, e851
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Edwards AD,
    2. Azzopardi D,
    3. Rutherford MA
    . Evaluation of MR imaging to predict neurodevelopmental impairment in preterm infants (e-prime). National Institute for Health Research Annual Report 2009 (http://www.nihr.ac.uk/files/pdfs/400891_NIHR_AnnualReport2010−acc3.pdf). Accessed September 14, 2011
  10. 10.↵
    1. Levine D
    . Ultrasound versus magnetic resonance imaging in fetal evaluation. Top Magn Reson Imaging 2001;12:25–38
    CrossRefPubMed
  11. 11.↵
    1. Frates MC,
    2. Kumar AJ,
    3. Benson CB,
    4. et al
    . Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology 2004;232:398–404
    PubMedWeb of Science
  12. 12.↵
    1. Whitby EH,
    2. Paley MN,
    3. Sprigg A,
    4. et al
    . Comparison of ultrasound and magnetic resonance imaging in 100 singleton pregnancies with suspected brain abnormalities. BJOG 2004;111:784–92
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Hill DL,
    2. Batchelor PG,
    3. Holden M,
    4. et al
    . Medical image registration. Phys Med Biol 2001;46:R1–45
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Bonel H,
    2. Frei KA,
    3. Raio L,
    4. et al
    . Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts. Eur Radiol 2008;18:822–29
    CrossRefPubMed
  15. 15.↵
    1. Hayat TT,
    2. Nihat A,
    3. Martinez-Biarge M,
    4. et al
    . Optimization and initial experience of a multisection balanced steady-state free precession cine sequence for the assessment of fetal behavior in utero. AJNR Am J Neuroradiol 2011;32:331–38
    Abstract/FREE Full Text
  16. 16.↵
    1. Limperopoulos C,
    2. Clouchoux C
    . Advancing fetal brain MRI: targets for the future. Semin Perinatol 2009;33:289–98
    CrossRefPubMed
  17. 17.↵
    1. Rutherford M,
    2. Jiang S,
    3. Allsop J,
    4. et al
    . MR imaging methods for assessing fetal brain development. Dev Neurobiol 2008;68:700–11
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Hayat T
    . Morphological and Functional Analysis of the Fetal Central Nervous System using Magnetic Resonance Imaging [thesis]. London, UK: Imaging Sciences Department, Imperial College; 2010
  19. 19.↵
    1. Dantendorfer K,
    2. Amering M,
    3. Bankier A,
    4. et al
    . A study of the effects of patient anxiety, perceptions and equipment on motion artifacts in magnetic resonance imaging. Magn Reson Imaging 1997;15:301–06
    CrossRefPubMed
  20. 20.↵
    1. de Vries JI,
    2. Fong BF
    . Changes in fetal motility as a result of congenital disorders: an overview. Ultrasound Obstet Gynecol 2007; 29:590–99
    CrossRefPubMed
  21. 21.↵
    1. Glenn OA,
    2. Barkovich J
    . Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 2. AJNR Am J Neuroradiol 2006;27:1807–14
    Abstract/FREE Full Text
  22. 22.↵
    1. Vertinsky AT,
    2. Rubesova E,
    3. Krasnokutsky MV,
    4. et al
    . Performance of PROPELLER relative to standard FSE T2-weighted imaging in pediatric brain MRI. Pediatr Radiol 2009;39:1038–47
    CrossRefPubMed
  23. 23.↵
    1. Chow LC
    . Motion correction for pediatric and MSK MRI. In: Proceedings of the International Society of Magnetic Resonance in Medicine Workshop on Current Concepts of Motion Correction for MRI & MRS, Kitzbuhel, Tyrol, Austria. February 24–28, 2010
  24. 24.↵
    1. Arena L,
    2. Morehouse HT,
    3. Safir J
    . MR imaging artifacts that simulate disease: how to recognize and eliminate them. Radiographics 1995;15:1373–94
    PubMed
  25. 25.↵
    1. Pipe J
    . The impact of motion on data consistency and image quality in MRI. In: Proceedings of the International Society of Magnetic Resonance in Medicine Workshop on Current Concepts of Motion Correction for MRI & MRS. Kitzbuhel, Tyrol, Austria. February 24–28, 2010
  26. 26.↵
    1. Atkinson D
    . Motion compensation strategies. In: Proceeding of the International Society of Magnetic Resonance in Medicine. Montreal, Canada. May 6–13, 2011
  27. 27.↵
    1. Maclaren JR
    . Motion Detection and Correction in Magnetic Resonance Imaging [thesis]. Christchurch, New Zealand: University of Canterbury; 2008
  28. 28.↵
    1. Schultz CL,
    2. Alfidi RJ,
    3. Nelson AD,
    4. et al
    . The effect of motion on two-dimensional Fourier transformation magnetic resonance images. Radiology 1984;152:117–21
    PubMed
  29. 29.↵
    1. Li T,
    2. Mirowitz SA
    . Fast T2-weighted MR imaging: impact of variation in pulse sequence parameters on image quality and artifacts. Magn Reson Imaging 2003;21:745–53
    CrossRefPubMed
  30. 30.↵
    1. Bailes DR,
    2. Gilderdale DJ,
    3. Bydder GM,
    4. et al
    . Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artefacta in MR imaging. J Comput Assist Tomogr 1985;9:835–38
    PubMedWeb of Science
  31. 31.↵
    1. Haacke EM,
    2. Patrick JL
    . Reducing motion artifacts in two-dimensional Fourier transform imaging. Magn Reson Imaging 1986;4:359–76
    CrossRefPubMed
  32. 32.↵
    1. Jhooti P,
    2. Wiesmann F,
    3. Taylor AM,
    4. et al
    . Hybrid ordered phase encoding (HOPE): an improved approach for respiratory artifact reduction. J Magn Reson Imaging 1998;8:968–80
    PubMed
  33. 33.↵
    1. Lanzer P,
    2. Barta C,
    3. Botvinick EH,
    4. et al
    . ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 1985;155:681–86
    PubMed
  34. 34.↵
    1. Bernstein M,
    2. King K,
    3. Zhou X
    . Handbook of MRI Pulse Sequences. Boston: Elsevier Academic Press; 2004
  35. 35.↵
    1. Chernish SM,
    2. Maglinte DD
    . Glucagon: common untoward reactions–review and recommendations. Radiology 1990; 177:145–46
    PubMed
  36. 36.↵
    1. Edwards AD,
    2. Arthurs OJ
    . Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol 2011;41:1353–64
    CrossRefPubMed
  37. 37.↵
    1. Whitwam JG,
    2. McCloy RF
    1. Cowan FM
    . Sedation for magnetic sedation for magnetic resonance scanning of infants and young children. In: Whitwam JG, McCloy RF, eds. Principles and Practice of Sedation, 2nd ed. London, UK: Blackwell Healthcare; 1998:206–13
  38. 38.↵
    1. Bluemke DA,
    2. Breiter SN
    . Sedation procedures in MR imaging: safety, effectiveness, and nursing effect on examinations. Radiology 2000;216:645–52
    PubMedWeb of Science
  39. 39.↵
    1. Bisset GS,
    2. Ball WS
    . Preparation, sedation, and monitoring of the pediatric patient in the magnetic resonance suite. Semin Ultrasound CT MR 1991;12:376–78
    PubMed
  40. 40.↵
    1. Rutherford MA
    . MRI of the Neonatal Brain. London: WB Saunders; 2002:17–21
  41. 41.↵
    1. Merchant N,
    2. Groves A,
    3. Larkman DJ,
    4. et al
    . A patient care system for early 3.0 Tesla magnetic resonance imaging of very low birth weight infants. Early Hum Dev 2009;85:779–83
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Hennig J,
    2. Nauerth A,
    3. Friedburg H
    . RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 1986;3:823–33
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Mansfield P
    . Multi-planar image-formation using NMR spin echoes. J Phys C Solid State Phys 1977;10:L55–58
    CrossRef
  44. 44.↵
    1. Jiang S,
    2. Xue H,
    3. Glover A,
    4. et al
    . MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. IEEE Trans Med Imaging 2007;26:967–80
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Chen Q,
    2. Levine D
    . Fast fetal magnetic resonance imaging techniques. Top Magn Reson Imaging 2001;12:67–79
    CrossRefPubMed
  46. 46.↵
    1. Frahm J,
    2. Haase A,
    3. Matthaei D
    . Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 1986;3:321–27
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Nitz WR
    . Fast and ultrafast non-echo-planar MR imaging techniques. Eur Radiol 2002;12:2866–82
    PubMedWeb of Science
  48. 48.↵
    1. Malamateniou C,
    2. McGuinness AK,
    3. Allsop JM,
    4. et al
    . Snapshot inversion recovery: an optimized single-shot T1-weighted inversion-recovery sequence for improved fetal brain anatomic delineation. Radiology 2011;258:229–35
    CrossRefPubMed
  49. 49.↵
    1. Graumann R,
    2. Fischer H,
    3. Oppelt A
    . A new pulse sequence for determining T1 and T2 simultaneously. Med Phys 1986;13:644–47
    CrossRefPubMed
  50. 50.↵
    1. Duerk JL,
    2. Lewin JS,
    3. Wendt M,
    4. et al
    . Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at. 2 T. J Magn Reson Imaging 1998;8:203–08
    PubMedWeb of Science
  51. 51.↵
    1. Sodickson DK,
    2. Manning WJ
    . Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591–603
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Pruessmann KP,
    2. Weiger M,
    3. Scheidegger MB,
    4. et al
    . SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–62
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Margosian P,
    2. Schmitt F,
    3. Purdy D
    . Faster MR imaging: imaging with half the data. Health Care Instrum 1986:37;93–102
  54. 54.↵
    1. McRobbie D,
    2. Moore E,
    3. Graves M,
    4. et al
    . MRI from Picture to Proton. New York: Cambridge University Press; 2006
  55. 55.↵
    1. Hennig J
    . K-space sampling strategies. Eur Radiol 1999;9:1020–31
    CrossRefPubMed
  56. 56.↵
    1. Pipe JG
    . Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963–69
    CrossRefPubMed
  57. 57.↵
    1. Larkman DJ,
    2. Atkinson D,
    3. Hajnal JV
    . Artifact reduction using parallel imaging methods. Top Magn Reson Imaging 2004;15:267–75
    CrossRefPubMed
  58. 58.↵
    1. Delfaut EM,
    2. Beltran J,
    3. Johnson G,
    4. et al
    . Fat suppression in MR imaging: techniques and pitfalls. Radiographics 1999;19:373–82
    PubMedWeb of Science
  59. 59.↵
    1. Stadler A,
    2. Schima W,
    3. Ba-Ssalamah A,
    4. et al
    . Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol 2007;17:1242–55
    CrossRefPubMed
  60. 60.↵
    1. Speck O
    . Prospective motion correction. In: Proceedings of the International Society of Magnetic Resonance in Medicine Workshop on Current Concepts of Motion Correction for MRI & MRS. Kitzbuhel, Tyrol, Austria. February 24–28, 2010
  61. 61.↵
    1. Ehman RL,
    2. Felmlee JP
    . Adaptive technique for high-definition MR imaging of moving structures. Radiology 1989;173:255–63
    PubMedWeb of Science
  62. 62.↵
    1. Wang Y,
    2. Riederer SJ,
    3. Ehman RL
    . Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 1995;33:713–19
    PubMedWeb of Science
  63. 63.↵
    1. Fu ZW,
    2. Wang Y,
    3. Grimm RC,
    4. et al
    . Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn Reson Med 1995;34:746–53
    PubMed
  64. 64.↵
    1. Welch EB,
    2. Manduca A,
    3. Grimm RC,
    4. et al
    . Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med 2002;47:32–41
    CrossRefPubMed
  65. 65.↵
    1. van der Kouwe AJ,
    2. Benner T,
    3. Dale AM
    . Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn Reson Med 2006;56:1019–32
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Klessen C,
    2. Asbach P,
    3. Kroencke TJ,
    4. et al
    . Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction. J Magn Reson Imaging 2005;21:576–82
    CrossRefPubMed
  67. 67.↵
    1. Barnwell JD,
    2. Smith JK,
    3. Castillo M
    . Utility of navigator-prospective acquisition correction technique (PACE) for reducing motion in brain MR imaging studies. AJNR Am J Neuroradiol 2007;28:790–91
    Abstract/FREE Full Text
  68. 68.↵
    1. Glover GH,
    2. Pauly JM
    . Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 1992;28:275–89
    PubMed
  69. 69.↵
    1. Forbes KP,
    2. Pipe JG,
    3. Karis JP,
    4. et al
    . Brain imaging in the unsedated pediatric patient: comparison of periodically rotated overlapping parallel lines with enhanced reconstruction and single-shot fast spin-echo sequences. AJNR Am J Neuroradiol 2003;24:794–98
    Abstract/FREE Full Text
  70. 70.↵
    1. Zaitsev M,
    2. Dold C,
    3. Sakas G,
    4. et al
    . Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 2006;31:1038–50
    CrossRefPubMed
  71. 71.↵
    1. White N,
    2. Roddey C,
    3. Shankaranarayanan A,
    4. et al
    . PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010;63:91–105
    CrossRefPubMed
  72. 72.↵
    1. Brown TT,
    2. Kuperman JM,
    3. Erhart M,
    4. et al
    . Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 2010;53:139–45
    CrossRefPubMedWeb of Science
  73. 73.↵
    1. Kuperman JM,
    2. Brown TT,
    3. Ahmadi ME,
    4. et al
    . Prospective motion correction improves diagnostic utility of pediatric MRI scans. Pediatr Radiol 2011;41:1578–82.
    CrossRefPubMed
  74. 74.↵
    1. Hedley M,
    2. Yan H
    . Motion artifact suppression: a review of post-processing techniques. Magn Reson Imaging 1992;10:627–35
    CrossRefPubMedWeb of Science
  75. 75.↵
    1. Rousseau F,
    2. Glenn OA,
    3. Iordanova B,
    4. et al
    . Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images. Acad Radiol 2006;13:1072–81
    CrossRefPubMedWeb of Science
  76. 76.↵
    1. Gholipour A,
    2. Estroff JA,
    3. Warfield SK
    . Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans Med Imaging 2010;29:1739–58
    CrossRefPubMedWeb of Science
  77. 77.↵
    1. Lustig M,
    2. Donoho D,
    3. Pauly JM
    . Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182–95
    CrossRefPubMedWeb of Science
  78. 78.↵
    1. Vasanawala SS,
    2. Alley MT,
    3. Hargreaves BA,
    4. et al
    . Improved pediatric MR imaging with compressed sensing. Radiology 2010;256:607–16
    CrossRefPubMed
  79. 79.↵
    1. Malamateniou C,
    2. Counsell SJ,
    3. Allsop JM,
    4. et al
    . The effect of preterm birth on neonatal cerebral vasculature studied with magnetic resonance angiography at 3 Tesla. Neuroimage 2006;32:1050–59
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 34 (6)
American Journal of Neuroradiology
Vol. 34, Issue 6
1 Jun 2013
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Motion-Compensation Techniques in Neonatal and Fetal MR Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C. Malamateniou, S.J. Malik, S.J. Counsell, J.M. Allsop, A.K. McGuinness, T. Hayat, K. Broadhouse, R.G. Nunes, A.M. Ederies, J.V. Hajnal, M.A. Rutherford
Motion-Compensation Techniques in Neonatal and Fetal MR Imaging
American Journal of Neuroradiology Jun 2013, 34 (6) 1124-1136; DOI: 10.3174/ajnr.A3128

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Motion-Compensation Techniques in Neonatal and Fetal MR Imaging
C. Malamateniou, S.J. Malik, S.J. Counsell, J.M. Allsop, A.K. McGuinness, T. Hayat, K. Broadhouse, R.G. Nunes, A.M. Ederies, J.V. Hajnal, M.A. Rutherford
American Journal of Neuroradiology Jun 2013, 34 (6) 1124-1136; DOI: 10.3174/ajnr.A3128
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Introduction and Scope
    • Patient Motion
    • Motion Artifacts
    • Postprocessing
    • Conclusion and Future Directions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21-36 weeks GA range
  • In utero diffusion tensor imaging of the fetal brain: a reproducibility study
  • 'Feed and wrap' or sedate and immobilise for neonatal brain MRI?
  • Choice of Diffusion Tensor Estimation Approach Affects Fiber Tractography of the Fornix in Preterm Brain
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire