Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

Proton MR Spectroscopy–Detectable Major Neurotransmitters of the Brain: Biology and Possible Clinical Applications

N. Agarwal and P.F. Renshaw
American Journal of Neuroradiology April 2012, 33 (4) 595-602; DOI: https://doi.org/10.3174/ajnr.A2587
N. Agarwal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.F. Renshaw
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Braitenberg V,
    2. Schüz A
    . Cortex: Statistics and Geometry of Neuronal Connectivity. Berlin, Germany: Springer-Verlag; 1998
  2. 2.↵
    1. Shen J,
    2. Petersen KF,
    3. Behar KL,
    4. et al
    . Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A 1999;96: 8235–40
    Abstract/FREE Full Text
  3. 3.↵
    1. Attwell D,
    2. Laughlin SB
    . An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001;21: 1133–45
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Pellerin L,
    2. Magistretti PJ
    . Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994;91: 10625–29
    Abstract/FREE Full Text
  5. 5.↵
    1. Sibson NR,
    2. Dhankhar A,
    3. Mason GF,
    4. et al
    . Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 1998;95: 316–21
    Abstract/FREE Full Text
  6. 6.↵
    1. van den Berg CJ,
    2. Garfinkel D
    . A simulation study of brain compartments: metabolism of glutamate and related substances in mouse brain. Biochem J 1971;123: 211–18
    Abstract/FREE Full Text
  7. 7.↵
    1. Pellerin L,
    2. Bouzier-Sore AK,
    3. Aubert A,
    4. et al
    . Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 2007;55: 1251–62
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Conn PJ,
    2. Pin JP
    . Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997;37: 205–37
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Corti C,
    2. Battaglia G,
    3. Molinaro G,
    4. et al
    . The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci 2007;27: 8297–308
    Abstract/FREE Full Text
  10. 10.↵
    1. Kvamme E,
    2. Schousboe A,
    3. Hertz L,
    4. et al
    . Developmental change of endogenous glutamate and gamma-glutamyl transferase in cultured cerebral cortical interneurons and cerebellar granule cells, and in mouse cerebral cortex and cerebellum in vivo. Neurochem Res 1985;10: 993–1008
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Beart PM,
    2. O'Shea RD
    . Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2007;150: 5–17
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Esclapez M,
    2. Tillakaratne NJ,
    3. Kaufman DL,
    4. et al
    . Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 1994;14: 1834–55
    Abstract
  13. 13.↵
    1. Wu H,
    2. Jin Y,
    3. Buddhala C,
    4. et al
    . Role of glutamate decarboxylase (GAD) isoform, GAD65, in GABA synthesis and transport into synaptic vesicles: evidence from GAD65-knockout mice studies. Brain Res 2007;1154: 80–83
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Martin DL,
    2. Rimvall K
    . Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 1993;60: 395–407
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Gadea A,
    2. Lopez-Colome AM
    . Glial transporters for glutamate, glycine, and GABA. II. GABA transporters. J Neurosci Res 2001;63: 461–68
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Chatton JY,
    2. Pellerin L,
    3. Magistretti PJ
    . GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci U S A 2003;100: 12456–61
    Abstract/FREE Full Text
  17. 17.↵
    1. Cherubini E,
    2. Conti F
    . Generating diversity at GABAergic synapses. Trends Neurosci 2001;24: 155–62
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Pouwels PJ,
    2. Frahm J
    . Differential distribution of NAA and NAAG in human brain as determined by quantitative localized proton MRS. NMR Biomed 1997;10: 73–78
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Gehl LM,
    2. Saab OH,
    3. Bzdega T,
    4. et al
    . Biosynthesis of NAAG by an enzyme-mediated process in rat central nervous system neurons and glia. J Neurochem 2004;90: 989–97
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Wroblewska B,
    2. Santi MR,
    3. Neale JH
    . N-acetylaspartylglutamate activates cyclic AMP-coupled metabotropic glutamate receptors in cerebellar astrocytes. Glia 1998;24: 172–79
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Bergeron R,
    2. Coyle JT,
    3. Tsai G,
    4. et al
    . NAAG reduces NMDA receptor current in CA1 hippocampal pyramidal neurons of acute slices and dissociated neurons. Neuropsychopharmacology 2005;30: 7–16
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Baslow MH
    . The astrocyte surface NAAG receptor and NAAG peptidase signaling complex as a therapeutic target. Drug News Perspect 2008;21: 251–57
    CrossRefPubMed
  23. 23.↵
    1. Baslow MH,
    2. Guilfoyle DN
    . Using proton magnetic resonance imaging and spectroscopy to understand brain “activation.” Brain Lang 2007;102: 153–64
    CrossRefPubMed
  24. 24.↵
    1. Baslow MH,
    2. Dyakin VV,
    3. Nowak KL,
    4. et al
    . 2-PMPA, a NAAG peptidase inhibitor, attenuates magnetic resonance BOLD signals in brain of anesthetized mice: evidence of a link between neuron NAAG release and hyperemia. J Mol Neurosci 2005;26: 1–15
    CrossRefPubMed
  25. 25.↵
    1. Hayashi T
    . A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol 1952;3: 46–64
    CrossRefPubMed
  26. 26.↵
    1. Chapman AG
    . Glutamate and epilepsy. J Nutr 2000;130: 1043S–45S
    PubMedWeb of Science
  27. 27.↵
    1. Jabs R,
    2. Seifert G,
    3. Steinhauser C
    . Astrocytic function and its alteration in the epileptic brain. Epilepsia 2008;49 (suppl 2): 3–12
  28. 28.↵
    1. la Fougere C,
    2. Rominger A,
    3. Forster S,
    4. et al
    . PET and SPECT in epilepsy: a critical review. Epilepsy Behav 2009;15: 50–55. Epub 2009 Feb 21
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Pfund Z,
    2. Chugani DC,
    3. Juhasz C,
    4. et al
    . Evidence for coupling between glucose metabolism and glutamate cycling using FDG PET and 1H magnetic resonance spectroscopy in patients with epilepsy. J Cereb Blood Flow Metab 2000;20: 871–78
    PubMedWeb of Science
  30. 30.↵
    1. White HS,
    2. Smith MD,
    3. Wilcox KS
    . Mechanisms of action of antiepileptic drugs. Int Rev Neurobiol 2007;81: 85–110
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Pacheco Otalora LF,
    2. Moffett JR,
    3. Garrido-Sanabria ER
    . Selective vulnerability of hippocampal NAAGergic neurons in experimental temporal lobe epilepsy. Brain Res 2007;1144: 219–30
    CrossRefPubMed
  32. 32.↵
    1. Meyerhoff JL,
    2. Carter RE,
    3. Yourick DL,
    4. et al
    . Activity of a NAAG-hydrolyzing enzyme in brain may affect seizure susceptibility in genetically epilepsy-prone rats. Epilepsy Res Suppl 1992;9: 163–72
    PubMed
  33. 33.↵
    1. Petroff OA,
    2. Rothman DL,
    3. Behar KL,
    4. et al
    . Low brain GABA level is associated with poor seizure control. Ann Neurol 1996;40: 908–11
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Petroff OA,
    2. Hyder F,
    3. Collins T,
    4. et al
    . Acute effects of vigabatrin on brain GABA and homocarnosine in patients with complex partial seizures. Epilepsia 1999;40: 958–64
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Woermann FG,
    2. McLean MA,
    3. Bartlett PA,
    4. et al
    . Short echo time single-voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis. Ann Neurol 1999;45: 369–76
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Simister RJ,
    2. McLean MA,
    3. Barker GJ,
    4. et al
    . Proton MR spectroscopy of metabolite concentrations in temporal lobe epilepsy and effect of temporal lobe resection. Epilepsy Res 2009;83: 168–76
    CrossRefPubMed
  37. 37.↵
    1. Ulu MO,
    2. Tanriverdi T,
    3. Oz B,
    4. et al
    . The expression of astroglial glutamate transporters in patients with focal cortical dysplasia: an immunohistochemical study. Acta Neurochir (Wien) 2010;152: 845–53. Epub 2009 Oct 27
    CrossRefPubMed
  38. 38.↵
    1. Provencher SW
    . Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993;30: 672–9
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Aggarwal S,
    2. Cudkowicz M
    . ALS drug development: reflections from the past and a way forward. Neurotherapeutics 2008;5: 516–27
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Choi JK,
    2. Kustermann E,
    3. Dedeoglu A,
    4. et al
    . Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci 2009;30: 2143–50. Epub 2009 Nov 20
    CrossRefPubMed
  41. 41.↵
    1. Han J,
    2. Ma L
    . Study of the features of proton MR spectroscopy ((1)H-MRS) on amyotrophic lateral sclerosis. J Magn Reson Imaging 2010;31: 305–08
    CrossRefPubMed
  42. 42.↵
    1. Boillee S,
    2. Vande Velde C,
    3. Cleveland DW
    . ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006;52: 39–59
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Rothstein JD,
    2. Tsai G,
    3. Kuncl RW,
    4. et al
    . Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990;28: 18–25
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Tsai GC,
    2. Stauch-Slusher B,
    3. Sim L,
    4. et al
    . Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res 1991;556: 151–56
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Rupsingh R,
    2. Borrie M,
    3. Smith M,
    4. et al
    . Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging 2011;32: 802–10. Epub 2009 Jun 6
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Marjanska M,
    2. Curran GL,
    3. Wengenack TM,
    4. et al
    . Monitoring disease progression in transgenic mouse models of Alzheimer's disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 2005;102: 11906–10
    Abstract/FREE Full Text
  47. 47.↵
    1. Glodzik L,
    2. King KG,
    3. Gonen O,
    4. et al
    . Memantine decreases hippocampal glutamate levels: a magnetic resonance spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2008;32: 1005–12
    CrossRefPubMed
  48. 48.↵
    1. Penner J,
    2. Rupsingh R,
    3. Smith M,
    4. et al
    . Increased glutamate in the hippocampus after galantamine treatment for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 2010;34: 104–10
    CrossRefPubMed
  49. 49.↵
    1. Griffith HR,
    2. den Hollander JA,
    3. Okonkwo OC,
    4. et al
    . Brain metabolism differs in Alzheimer's disease and Parkinson's disease dementia. Alzheimers Dement 2008;4: 421–27
    CrossRefPubMed
  50. 50.↵
    1. Tkac I,
    2. Dubinsky JM,
    3. Keene CD,
    4. et al
    . Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy. J Neurochem 2007;100: 1397–406. Epub 2007 Jan 8
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Reynolds NC,
    2. Prost RW,
    3. Mark LP,
    4. et al
    . MR-spectroscopic findings in juvenile-onset Huntington's disease. Mov Disord 2008;23: 1931–35
    CrossRefPubMed
  52. 52.↵
    1. Theberge J,
    2. Williamson KE,
    3. Aoyama N,
    4. et al
    . Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry 2007;191: 325–34
    Abstract/FREE Full Text
  53. 53.↵
    1. Agarwal N,
    2. Port JD,
    3. Bazzocchi M,
    4. et al
    . Update on the use of MR for assessment and diagnosis of psychiatric diseases. Radiology 2010;255: 23–41
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Epperson CN,
    2. Gueorguieva R,
    3. Czarkowski KA,
    4. et al
    . Preliminary evidence of reduced occipital GABA concentrations in puerperal women: a 1H-MRS study. Psychopharmacology (Berl) 2006;186: 425–33
    CrossRefPubMed
  55. 55.↵
    1. DeVito TJ,
    2. Drost DJ,
    3. Pavlosky W,
    4. et al
    . Brain magnetic resonance spectroscopy in Tourette's disorder. J Am Acad Child Adolesc Psychiatry 2005;44: 1301–08
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Kickler N,
    2. Krack P,
    3. Fraix V,
    4. et al
    . Glutamate measurement in Parkinson's disease using MRS at 3 T field strength. NMR Biomed 2007;20: 757–62
    CrossRefPubMed
  57. 57.↵
    1. Bogner W,
    2. Gruber S,
    3. Doelken M,
    4. et al
    . In vivo quantification of intracerebral GABA by single-voxel (1)H-MRS: how reproducible are the results? Eur J Radiol 2010;73: 526–31
    CrossRefPubMed
  58. 58.↵
    1. Provencher SW,
    2. Hänicke W,
    3. Michaelis T
    . Automated quantitation of localized 1H MR spectra in vivo: capabilities and limitations. In: Proceedings of the Third Scientific Meeting of the Society of Magnetic Resonance, Nice, France; August 19–25, 1995
  59. 59.
    1. Simister RJ,
    2. McLean MA,
    3. Barker GJ,
    4. et al
    . MRS reveals frontal lobe metabolite abnormalities in idiopathic generalized epilepsy. Neurology 2003;61: 897–902
    Abstract/FREE Full Text
  60. 60.
    1. Taki MM,
    2. Harada M,
    3. Mori K,
    4. et al
    . High gamma-aminobutyric acid level in cortical tubers in epileptic infants with tuberous sclerosis complex measured with the MEGA-editing J-difference method and a three-Tesla clinical MRI instrument. Neuroimage 2009;47: 1207–14
    CrossRefPubMedWeb of Science
  61. 61.
    1. Stagg CJ,
    2. Lang B,
    3. Best JG,
    4. et al
    . Autoantibodies to glutamic acid decarboxylase in patients with epilepsy are associated with low cortical GABA levels. Epilepsia 2010;51: 1898–901
    CrossRefPubMedWeb of Science
  62. 62.
    1. Simister RJ,
    2. Mclean MA,
    3. Barker GJ,
    4. et al
    . Proton magnetic resonance spectroscopy of malformations of cortical development causing epilepsy. Epilepsy Res 2007;74: 107–15
    CrossRefPubMedWeb of Science
  63. 63.
    1. Lin K,
    2. Carrete H Jr.,
    3. Lin J,
    4. et al
    . Magnetic resonance spectroscopy reveals an epileptic network in juvenile myoclonic epilepsy. Epilepsia 2009;60: 1191–2000
  64. 64.
    1. Doelken MT,
    2. Hammen T,
    3. Bogner W,
    4. et al
    . Alterations of intracerebral γ-aminobutyric acid (GABA) levels by titration with levetiracetam in patients with focal epilepsies. Epilepsia 2010;51: 1477–82
    CrossRefPubMed
  65. 65.
    1. Mueller SG,
    2. Weber OM,
    3. Duc CO,
    4. et al
    . Effects of vigabatrin on brain GABA+/CR signals in patients with epilepsy monitored by 1H-NMR-spectroscopy: responder characteristics. Epilepsia 2001;42: 29–40
  66. 66.
    1. Petroff OA,
    2. Hyder F,
    3. Rothman DL,
    4. et al
    . Topiramate rapidly raises brain GABA in epilepsy patients. Epilepsia 2001;42: 543–48
    CrossRefPubMedWeb of Science
  67. 67.
    1. Rijpkema M,
    2. Schuuring J,
    3. van der Meulen Y,
    4. et al
    . Characterization of oligodendrogliomas using short echo time 1H MR spectroscopic imaging. NMR Biomed 2003;16: 12–18
    CrossRefPubMedWeb of Science
  68. 68.
    1. Prescot A,
    2. Becerra L,
    3. Pendse G,
    4. et al
    . Excitatory neurotransmitters in brain regions in interictal migrane patients. Mol Pain 2009;5: 34
  69. 69.
    1. Antuono PG,
    2. Jones JL,
    3. Wang Y,
    4. et al
    . Decreased glutamate + glutamine in Alzheimer's disease detected in vivo with (1)H-MRS at 0.5 T. Neurology 2001;56: 737–42
    Abstract/FREE Full Text
  70. 70.
    1. Hattori N,
    2. Abe K,
    3. Sakoda S,
    4. et al
    . Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer's disease. Neuroreport 2002;13: 183–86
    CrossRefPubMedWeb of Science
  71. 71.
    1. Glodzik L,
    2. King KG,
    3. Gonen O,
    4. et al
    . Memantine decreases hippocampal glutamate level: a magnetic resonance spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2008;32: 1005–12
    CrossRefPubMed
  72. 72.
    1. Oz G,
    2. Terpstra M,
    3. Tkác I,
    4. et al
    . Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn Reson Med 2006;55: 296–301
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (4)
American Journal of Neuroradiology
Vol. 33, Issue 4
1 Apr 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Proton MR Spectroscopy–Detectable Major Neurotransmitters of the Brain: Biology and Possible Clinical Applications
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N. Agarwal, P.F. Renshaw
Proton MR Spectroscopy–Detectable Major Neurotransmitters of the Brain: Biology and Possible Clinical Applications
American Journal of Neuroradiology Apr 2012, 33 (4) 595-602; DOI: 10.3174/ajnr.A2587

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Proton MR Spectroscopy–Detectable Major Neurotransmitters of the Brain: Biology and Possible Clinical Applications
N. Agarwal, P.F. Renshaw
American Journal of Neuroradiology Apr 2012, 33 (4) 595-602; DOI: 10.3174/ajnr.A2587
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Neurotransmitters
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Dorsal striatal dopamine induces fronto-cortical hypoactivity and implies reduced anxiety and compulsive behaviors in rats
  • A Review of MR Spectroscopy Studies of Pediatric Bipolar Disorder
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire