Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Getting new auth cookie, if you see this message a lot, tell someone!
Research ArticleBrain
Open Access

Age-Related Changes of Cerebral Autoregulation: New Insights with Quantitative T2′-Mapping and Pulsed Arterial Spin-Labeling MR Imaging

M. Wagner, A. Jurcoane, S. Volz, J. Magerkurth, F.E. Zanella, T. Neumann-Haefelin, R. Deichmann, O.C. Singer and E. Hattingen
American Journal of Neuroradiology December 2012, 33 (11) 2081-2087; DOI: https://doi.org/10.3174/ajnr.A3138
M. Wagner
aFrom the Institute of Neuroradiology (M.W., A.J., J.M., F.E.Z., E.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Jurcoane
aFrom the Institute of Neuroradiology (M.W., A.J., J.M., F.E.Z., E.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Volz
cBrain Imaging Center (S.V., R.D.), Goethe University Frankfurt am Main, Frankfurt am Main, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Magerkurth
aFrom the Institute of Neuroradiology (M.W., A.J., J.M., F.E.Z., E.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.E. Zanella
aFrom the Institute of Neuroradiology (M.W., A.J., J.M., F.E.Z., E.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Neumann-Haefelin
bDepartment of Neurology (T.N.-H., O.C.S.), University Hospital
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Deichmann
cBrain Imaging Center (S.V., R.D.), Goethe University Frankfurt am Main, Frankfurt am Main, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O.C. Singer
bDepartment of Neurology (T.N.-H., O.C.S.), University Hospital
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Hattingen
aFrom the Institute of Neuroradiology (M.W., A.J., J.M., F.E.Z., E.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Johnston AJ,
    2. Steiner LA,
    3. Gupta AK,
    4. et al
    . Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. Br J Anaesth 2003; 90: 774– 86
    Abstract/FREE Full Text
  2. 2.↵
    1. Immink RV,
    2. van den Born BJ,
    3. van Montfrans GA,
    4. et al
    . Impaired cerebral autoregulation in patients with malignant hypertension. Circulation 2004; 110: 2241– 45
    Abstract/FREE Full Text
  3. 3.↵
    1. Bateman GA,
    2. Levi CR,
    3. Schofield P,
    4. et al
    . Quantitative measurement of cerebral haemodynamics in early vascular dementia and Alzheimer's disease. J Clin Neurosci 2006; 13: 563– 68
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Cantin S,
    2. Villien M,
    3. Moreaud O,
    4. et al
    . Impaired cerebral vasoreactivity to CO2 in Alzheimer's disease using BOLD fMRI. Neuroimage 2011; 58: 579– 87
    CrossRefPubMed
  5. 5.↵
    1. Lee SY,
    2. Dinesh SK,
    3. Thomas J
    . Hypertension-induced reversible posterior leukoencephalopathy syndrome causing obstructive hydrocephalus. J Clin Neurosci 2008; 15: 457– 59
    CrossRefPubMed
  6. 6.↵
    1. Armstead WM,
    2. Kiessling JW,
    3. Kofke WA,
    4. et al
    . Impaired cerebral blood flow autoregulation during posttraumatic arterial hypotension after fluid percussion brain injury is prevented by phenylephrine in female but exacerbated in male piglets by extracellular signal-related kinase mitogen-activated protein kinase upregulation. Crit Care Med 2010; 38: 1868– 74
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Meguro K,
    2. Hatazawa J,
    3. Yamaguchi T,
    4. et al
    . Cerebral circulation and oxygen metabolism associated with subclinical periventricular hyperintensity as shown by magnetic resonance imaging. Ann Neurol 1990; 28: 378– 83
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Yamauchi H,
    2. Fukuyama H,
    3. Yamaguchi S,
    4. et al
    . High-intensity area in the deep white matter indicating hemodynamic compromise in internal carotid artery occlusive disorders. Arch Neurol 1991; 48: 1067– 71
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Fazekas F,
    2. Niederkorn K,
    3. Schmidt R,
    4. et al
    . White matter signal abnormalities in normal individuals: correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke 1988; 19: 1285– 88
    Abstract/FREE Full Text
  10. 10.↵
    1. Kety SS
    . Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis 1956; 3: 478– 86
    CrossRefPubMed
  11. 11.↵
    1. Leenders KL,
    2. Perani D,
    3. Lammertsma AA,
    4. et al
    . Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age. Brain 1990; 113: 27– 47
    Abstract/FREE Full Text
  12. 12.↵
    1. Parkes LM,
    2. Rashid W,
    3. Chard DT,
    4. et al
    . Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 2004; 51: 736– 43
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Martin AJ,
    2. Friston KJ,
    3. Colebatch JG,
    4. et al
    . Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab 1991; 11: 684– 89
    PubMedWeb of Science
  14. 14.↵
    1. Pantano P,
    2. Baron JC,
    3. Lebrun-Grandié P,
    4. et al
    . Regional cerebral blood flow and oxygen consumption in human aging. Stroke 1984; 15: 635– 41
    Abstract/FREE Full Text
  15. 15.↵
    1. Iseki K,
    2. Hanakawa T,
    3. Hashikawa K,
    4. et al
    . Gait disturbance associated with white matter changes: a gait analysis and blood flow study. Neuroimage 2010; 49: 1659– 66
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Seals DR,
    2. Jablonski KL,
    3. Donato AJ
    . Aging and vascular endothelial function in humans. Clin Sci (Lond) 2011; 120: 357– 75
    Abstract/FREE Full Text
  17. 17.↵
    1. Moody DM,
    2. Brown WR,
    3. Challa VR,
    4. et al
    . Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer's disease. Ann N Y Acad Sci 1997; 826: 103– 16
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Kety SS,
    2. Schmidt CF
    . The nitrous oxygen method for quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 1948; 27: 476– 83
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Amano T,
    2. Meyer JS,
    3. Okabe T,
    4. et al
    . Cerebral vasomotor responses during oxygen inhalation: results in normal aging and dementia. Arch Neurol 1983; 40: 277– 82
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Duara R,
    2. Margolin RA,
    3. Robertson-Tchabo EA,
    4. et al
    . Cerebral glucose utilization, as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. Brain 1983; 106: 761– 75
    Abstract/FREE Full Text
  21. 21.↵
    1. Aquino D,
    2. Bizzi A,
    3. Grisoli M,
    4. et al
    . Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009; 252: 165– 72
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Drayer BP
    . Imaging of the aging brain. Part I. Normal findings. Radiology 1988; 166: 785– 96
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Drayer BP
    . Basal ganglia: significance of signal hypointensity on T2-weighted MR images. Radiology 1989; 173: 311– 12
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Pujol J,
    2. Junqué C,
    3. Vendrell P,
    4. et al
    . Biological significance of iron-related magnetic resonance imaging changes in the brain. Arch Neurol 1992; 49: 711– 17
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Langkammer C,
    2. Krebs N,
    3. Goessler W,
    4. et al
    . Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010; 257: 455– 62
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Fazekas F,
    2. Chawluk JB,
    3. Alavi A,
    4. et al
    . MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 1987; 149: 351– 56
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Fazekas F,
    2. Alavi A,
    3. Chawluk JB,
    4. et al
    . Comparison of CT, MR, and PET in Alzheimer's dementia and normal aging. J Nucl Med 1989; 30: 1607– 15
    Abstract/FREE Full Text
  28. 28.↵
    1. Inglese M,
    2. Ge Y
    . Quantitative MRI: hidden age-related changes in brain tissue. Top Magn Reson Imaging 2004; 15: 355– 63
    CrossRefPubMed
  29. 29.↵
    1. Bartzokis G,
    2. Tishler TA,
    3. Shin IS,
    4. et al
    . Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann N Y Acad Sci 2004; 1012: 224– 36
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Rivkin MJ,
    2. Wolraich D,
    3. Als H,
    4. et al
    . Prolonged T*2 values in newborn versus adult brain: Implications for fMRI studies of newborns. Magn Reson Med 2004; 51: 1287– 91
    CrossRefPubMed
  31. 31.↵
    1. Siemonsen S,
    2. Finsterbusch J,
    3. Matschke J,
    4. et al
    . Age-dependent normal values of T2* and T2′ in brain parenchyma. AJNR Am J Neuroradiol 2008; 29: 950– 55
    Abstract/FREE Full Text
  32. 32.↵
    1. Speck O,
    2. Ernst T,
    3. Chang L
    . Biexponential modeling of multigradient-echo MRI data of the brain. Magn Reson Med 2001; 45: 1116– 21
    CrossRefPubMed
  33. 33.↵
    1. Donahue MJ,
    2. Blicher JU,
    3. Østergaard L,
    4. et al
    . Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab 2009; 29: 1856– 66
    CrossRefPubMed
  34. 34.↵
    1. Benedetti B,
    2. Charil A,
    3. Rovaris M,
    4. et al
    . Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRI. Neurology 2006; 66: 535– 39
    Abstract/FREE Full Text
  35. 35.↵
    1. Brooks DJ,
    2. Luthert P,
    3. Gadian D,
    4. et al
    . Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry 1989; 52: 108– 11
    Abstract/FREE Full Text
  36. 36.↵
    1. Falangola MF,
    2. Dyakin VV,
    3. Lee SP,
    4. et al
    . Quantitative MRI reveals aging-associated T2 changes in mouse models of Alzheimer's disease. NMR Biomed 2007; 20: 343– 51
    CrossRefPubMed
  37. 37.↵
    1. Thulborn KR,
    2. Waterton JC,
    3. Matthews PM,
    4. et al
    . Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 1982; 714: 265– 70
    PubMed
  38. 38.↵
    1. Thulborn KR
    . My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water. Neuroimage 2012; 62: 589– 93
    CrossRefPubMed
  39. 39.↵
    1. Evans AC
    . Brain Development Cooperative Group: the NIH MRI study of normal brain development. Neuroimage 2006; 30: 184–202
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Ogawa S,
    2. Lee TM,
    3. Kay AR,
    4. et al
    . Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990; 87: 9868– 72
    Abstract/FREE Full Text
  41. 41.↵
    1. Magerkurth J,
    2. Volz S,
    3. Wagner M,
    4. et al
    . Quantitative T*(2)-mapping based on multi-slice multiple gradient echo FLASH imaging: retrospective correction for subject motion effects. Magn Reson Med 2011; 66: 989– 97
    CrossRefPubMed
  42. 42.↵
    1. Williams DS,
    2. Detre JA,
    3. Leigh JS,
    4. et al
    . Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992; 89: 212– 16
    Abstract/FREE Full Text
  43. 43.↵
    1. Losert C,
    2. Peller M,
    3. Schneider P,
    4. et al
    . Oxygen-enhanced MRI of the brain. Magn Res Med 2002; 48: 271– 77
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Ericsson A,
    2. Weis J,
    3. Hemmingsson A,
    4. et al
    . Measurements of magnetic field variations in the human brain using a 3D-FT multiple gradient echo technique. Magn Reson Med 1995; 33: 171– 77
    CrossRefPubMed
  45. 45.↵
    1. Ordidge RJ,
    2. Gorell JM,
    3. Deniau JC,
    4. et al
    . Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 1994; 32: 335– 41
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Fernandez-Seara MA,
    2. Wehrli FW
    . Postprocessing technique to correct for background gradients in image-based R*(2) measurements. Magn Reson Med 2000; 44: 358– 66
    CrossRefPubMed
  47. 47.↵
    1. Yang QX,
    2. Williams GD,
    3. Demeure RJ,
    4. et al
    . Removal of local field gradient artifacts in T2*-weighted images at high fields by gradient-echo slice excitation profile imaging. Magn Reson Med 1998; 39: 402– 09
    CrossRefPubMed
  48. 48.↵
    1. Baudrexel S,
    2. Volz S,
    3. Preibisch C,
    4. et al
    . Rapid single-scan T2*-mapping using exponential excitation pulses and image-based correction for linear background gradients. Magn Reson Med 2009; 62: 263– 68
    CrossRefPubMed
  49. 49.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW,
    4. et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: S208– 19
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M,
    4. et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825– 41
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Mugler JP 3rd.,
    2. Brookeman JR
    . Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990; 15: 152– 57
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Luh WM,
    2. Wong EC,
    3. Bandettini PA,
    4. et al
    . QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999; 41: 1246– 54
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Jakob PM,
    2. Hillenbrand CM,
    3. Wang T,
    4. et al
    . Rapid quantitative lung 1H T1 mapping. J Magn Reson Imaging 2001; 14: 795– 99
    CrossRefPubMed
  54. 54.↵
    1. Edelman RR,
    2. Hatabu H,
    3. Tadamura E,
    4. et al
    . Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 1996; 2: 1236– 39
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Beer M,
    2. Stäb D,
    3. Oechsner M,
    4. et al
    . Oxygen-enhanced functional MR lung imaging. Radiologe 2009; 49: 732– 38
    CrossRefPubMed
  56. 56.↵
    1. Uematsu H,
    2. Takahashi M,
    3. Hatabu H,
    4. et al
    . Changes in T1 and T2 observed in brain magnetic resonance imaging with delivery of high concentrations of oxygen. J Comput Assist Tomogr 2007; 31: 662– 65
    CrossRefPubMed
  57. 57.↵
    R Foundation For Statistical Computing R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2008
  58. 58.↵
    1. Akiyama H,
    2. Meyer JS,
    3. Mortel KF,
    4. et al
    . Normal human aging: factors contributing to cerebral atrophy. J Neurol Sci 1997; 152: 39– 49
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Lee C,
    2. Lopez OL,
    3. Becker JT,
    4. et al
    . Imaging cerebral blood flow in the cognitively normal aging brain with arterial spin labeling: implications for imaging of neurodegenerative disease. J Neuroimaging 2009; 19: 344– 52
    CrossRefPubMed
  60. 60.↵
    1. Terry RD,
    2. DeTeresa R,
    3. Hansen LA
    . Neocortical cell counts in normal human adult aging. Ann Neurol 1987; 21: 530– 39
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Rosano C,
    2. Sigurdsson S,
    3. Siggeirsdottir K,
    4. et al
    . Magnetization transfer imaging, white matter hyperintensities, brain atrophy and slower gait in older men and women. Neurobiol Aging 2010; 31: 1197– 204
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Rodrigue KM,
    2. Haacke EM,
    3. Raz N
    . Differential effects of age and history of hypertension on regional brain volumes and iron. Neuroimage 2011; 54: 750– 59
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. de Weerd M,
    2. Greving JP,
    3. Hedblad B,
    4. et al
    . Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke 2010; 41: 1294– 97
    Abstract/FREE Full Text
  64. 64.↵
    1. Hallgren B,
    2. Sourander P
    . The effect of age on the non-haemin iron in the human brain. J Neurochem 1958; 3: 41– 51
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Ding XQ,
    2. Kucinski T,
    3. Wittkugel O,
    4. et al
    . Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol 2004; 39: 740– 46
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Marshall VG,
    2. Bradley WG Jr.,
    3. Marshall CE,
    4. et al
    . Deep white matter infarction: correlation of MR imaging and histopathologic findings. Radiology 1988; 167: 517– 22
    CrossRefPubMedWeb of Science
  67. 67.↵
    1. Awad IA,
    2. Spetzler RF,
    3. Hodak JA,
    4. et al
    . Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. I. Correlation with age and cerebrovascular risk factors. Stroke 1986; 17: 1084– 89
    Abstract/FREE Full Text
  68. 68.↵
    1. Braffman BH,
    2. Zimmerman RA,
    3. Trojanowski JQ,
    4. et al
    . Brain MR: pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol 1988; 151: 559– 66
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Braffman BH,
    2. Zimmerman RA,
    3. Trojanowski JQ,
    4. et al
    . Brain MR: pathologic correlation with gross and histopathology. 1. Lacunar infarction and Virchow-Robin spaces. AJR Am J Roentgenol 1988; 151: 551– 58
    PubMedWeb of Science
  70. 70.↵
    1. Breger RK,
    2. Yetkin FZ,
    3. Fischer ME,
    4. et al
    . T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology 1991; 181: 545– 47
    CrossRefPubMed
  71. 71.↵
    1. Autti T,
    2. Raininko R,
    3. Vanhanen SL,
    4. et al
    . MRI of the normal brain from early childhood to middle age. I. Appearances on T2- and proton density-weighted images and occurrence of incidental high-signal foci. Neuroradiology 1994; 36: 644– 48
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. Autti T,
    2. Raininko R,
    3. Vanhanen SL,
    4. et al
    . MRI of the normal brain from early childhood to middle age. II. Age dependence of signal intensity changes on T2-weighted images. Neuroradiology 1994; 36: 649– 51
    CrossRefPubMedWeb of Science
  73. 73.↵
    1. Nusbaum AO,
    2. Tang CY,
    3. Buchsbaum MS,
    4. et al
    . Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 2001; 22: 136– 42
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (11)
American Journal of Neuroradiology
Vol. 33, Issue 11
1 Dec 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Age-Related Changes of Cerebral Autoregulation: New Insights with Quantitative T2′-Mapping and Pulsed Arterial Spin-Labeling MR Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Wagner, A. Jurcoane, S. Volz, J. Magerkurth, F.E. Zanella, T. Neumann-Haefelin, R. Deichmann, O.C. Singer, E. Hattingen
Age-Related Changes of Cerebral Autoregulation: New Insights with Quantitative T2′-Mapping and Pulsed Arterial Spin-Labeling MR Imaging
American Journal of Neuroradiology Dec 2012, 33 (11) 2081-2087; DOI: 10.3174/ajnr.A3138

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Age-Related Changes of Cerebral Autoregulation: New Insights with Quantitative T2′-Mapping and Pulsed Arterial Spin-Labeling MR Imaging
M. Wagner, A. Jurcoane, S. Volz, J. Magerkurth, F.E. Zanella, T. Neumann-Haefelin, R. Deichmann, O.C. Singer, E. Hattingen
American Journal of Neuroradiology Dec 2012, 33 (11) 2081-2087; DOI: 10.3174/ajnr.A3138
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Arterial Spin-Labeling Parameters and Their Associations with Risk Factors, Cerebral Small-Vessel Disease, and Etiologic Subtypes of Cognitive Impairment and Dementia
  • Detection of Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • White Matter Alterations in the Brains of Patients with Active, Remitted, and Cured Cushing Syndrome: A DTI Study
  • Qualitative and Quantitative Analysis of MR Imaging Findings in Patients with Middle Cerebral Artery Stroke Implanted with Mesenchymal Stem Cells
  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire