Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain

Automated Optimization of Subcortical Cerebral MR Imaging−Atlas Coregistration for Improved Postoperative Electrode Localization in Deep Brain Stimulation

T. Schönecker, A. Kupsch, A.A. Kühn, G.-H. Schneider and K.-T. Hoffmann
American Journal of Neuroradiology November 2009, 30 (10) 1914-1921; DOI: https://doi.org/10.3174/ajnr.A1741
T. Schönecker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Kupsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.A. Kühn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.-H. Schneider
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.-T. Hoffmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Saint-Cyr JA,
    2. Hoque T,
    3. Pereira LC,
    4. et al
    . Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 2002;97:1152–66
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Plaha P,
    2. Ben-Shlomo Y,
    3. Patel NK,
    4. et al
    . Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 2006;129:1732–47
    Abstract/FREE Full Text
  3. 3.↵
    1. Houeto JL,
    2. Yelnik J,
    3. Bardinet E,
    4. et al
    . Acute deep-brain stimulation of the internal and external globus pallidus in primary dystonia: functional mapping of the pallidum. Arch Neurol 2007;64:1281–86
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Nowinski WL
    . Towards construction of an ideal stereotactic brain atlas. Acta Neurochir (Wien) 2008;150:1–13
    CrossRefPubMed
  5. 5.↵
    1. Ahsan RL,
    2. Allom R,
    3. Gousias IS,
    4. et al
    . Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus. Neuroimage 2007;38:261–70
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Pallavaram S,
    2. Yu H,
    3. Spooner J,
    4. et al
    . Intersurgeon variability in the selection of anterior and posterior commissures and its potential effects on target localization. Stereotact Funct Neurosurg 2008;86:113–19
    CrossRefPubMed
  7. 7.↵
    1. Pollo C,
    2. Vingerhoets F,
    3. Pralong E,
    4. et al
    . Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. J Neurosurg 2007;106:36–44
    CrossRefPubMed
  8. 8.↵
    1. Richter EO,
    2. Hoque T,
    3. Halliday W,
    4. et al
    . Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg 2004;100:541–46
    PubMedWeb of Science
  9. 9.↵
    1. Starr PA,
    2. Christine CW,
    3. Theodosopoulos PV,
    4. et al
    . Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 2002;97:370–87
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Zonenshayn M,
    2. Sterio D,
    3. Kelly PJ,
    4. et al
    . Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson's disease. Surg Neurol 2004;62:216–25, discussion 225–26
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Lanotte MM,
    2. Rizzone M,
    3. Bergamasco B,
    4. et al
    . Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 2002;72:53–58
    Abstract/FREE Full Text
  12. 12.↵
    1. Walhovd KB,
    2. Fjell AM,
    3. Reinvang I,
    4. et al
    . Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging 2005;26:1261–70, discussion 1275–78
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Raz N,
    2. Rodrigue KM,
    3. Kennedy KM,
    4. et al
    . Differential aging of the human striatum: longitudinal evidence. AJNR Am J Neuroradiol 2003;24:1849–56
    Abstract/FREE Full Text
  14. 14.↵
    1. Kitajima M,
    2. Korogi Y,
    3. Kakeda S,
    4. et al
    . Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology 2008;50:675–81
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Patel NK,
    2. Khan S,
    3. Gill SS
    . Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson's disease. Stereotact Funct Neurosurg 2008;86:153–61
    CrossRefPubMed
  16. 16.↵
    1. Zhu XL,
    2. Hamel W,
    3. Schrader B,
    4. et al
    . Magnetic resonance imaging-based morphometry and landmark correlation of basal ganglia nuclei. Acta Neurochir (Wien) 2002;144:959–69
    CrossRefPubMed
  17. 17.↵
    1. Starr PA,
    2. Vitek JL,
    3. Delong M,
    4. et al
    . Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 1999;44:303–13
    PubMedWeb of Science
  18. 18.↵
    1. Demeter S,
    2. Ringo JL,
    3. Doty RW
    . Morphometric analysis of the human corpus callosum and anterior commissure. Hum Neurobiol 1988;6:219–26
    PubMedWeb of Science
  19. 19.↵
    1. Schaltenbrand G,
    2. Wahren W
    . Atlas for Stereotaxy of the Human Brain. Stuttgart, Germany: Thieme; 1977
  20. 20.↵
    1. Morel A,
    2. Magnin M,
    3. Jeanmonod D
    . Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 1997;387:588–630
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Godinho F,
    2. Thobois S,
    3. Magnin M,
    4. et al
    . Subthalamic nucleus stimulation in Parkinson's disease: anatomical and electrophysiological localization of active contacts. J Neurol 2006;253:1347–55
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Hamel W,
    2. Fietzek U,
    3. Morsnowski A,
    4. et al
    . Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 2003;74:1036–46
    Abstract/FREE Full Text
  23. 23.↵
    1. Yelnik J,
    2. Damier P,
    3. Demeret S,
    4. et al
    . Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlas-magnetic resonance imaging coregistration method. J Neurosurg 2003;99:89–99
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Videen TO,
    2. Campbell MC,
    3. Tabbal SD,
    4. et al
    . Validation of a fiducial-based atlas localization method for deep brain stimulation contacts in the area of the subthalamic nucleus. J Neurosci Methods 2008;168:275–81
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Mai J,
    2. Assheuer J,
    3. Paxinos G
    . Atlas of the Human Brain. San Diego: Elsevier Academic; 2004
  26. 26.↵
    1. Bardinet E,
    2. Bhattacharjee M,
    3. Dormont D,
    4. et al
    . A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease. J Neurosurg 2009;110:208–19
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Yelnik J,
    2. Bardinet E,
    3. Dormont D,
    4. et al
    . A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data. Neuroimage 2007;34:618–38
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Mallet L,
    2. Polosan M,
    3. Jaafari N,
    4. et al
    . Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 2008;359:2121–34
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M,
    4. et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Tagliati M,
    2. Jankovic J,
    3. Pagan F,
    4. et al
    . Safety of MRI in patients with implanted deep brain stimulation devices. Neuroimage 2009;47 Suppl 2:T53–57. Epub 2009 Apr 17
    CrossRefPubMed
  31. 31.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW,
    4. et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;(23 suppl 1):S208–19
  32. 32.↵
    1. Meyer CR,
    2. Boes JL,
    3. Kim B,
    4. et al
    . Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Med Image Anal 1997;1:195–206
    CrossRefPubMed
  33. 33.↵
    1. Smith SM,
    2. Zhang Y,
    3. Jenkinson M,
    4. et al
    . Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479–89
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Huang X,
    2. Lee YZ,
    3. McKeown M,
    4. et al
    . Asymmetrical ventricular enlargement in Parkinson's disease. Mov Disord 2007;22:1657–60
    CrossRefPubMed
  35. 35.↵
    1. Andrade-Souza YM,
    2. Schwalb JM,
    3. Hamani C,
    4. et al
    . Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson's disease. Neurosurgery 2005;56:360–68
    CrossRefPubMed
  36. 36.↵
    1. Grachev ID,
    2. Berdichevsky D,
    3. Rauch SL,
    4. et al
    . A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks. Neuroimage 1999;9:250–68
    CrossRefPubMed
  37. 37.↵
    1. Black KJ,
    2. Ongur D,
    3. Perlmutter JS
    . Putamen volume in idiopathic focal dystonia. Neurology 1998;51:819–24
    Abstract/FREE Full Text
  38. 38.↵
    1. Geng DY,
    2. Li YX,
    3. Zee CS
    . Magnetic resonance imaging-based volumetric analysis of basal ganglia nuclei and substantia nigra in patients with Parkinson's disease. Neurosurgery 2006;58:256–62
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Brenneis C,
    2. Seppi K,
    3. Schocke MF,
    4. et al
    . Voxel-based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy. Mov Disord 2003;18:1132–38
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Napadow V,
    2. Dhond R,
    3. Kennedy D,
    4. et al
    . Automated brainstem co-registration (ABC) for MRI. Neuroimage 2006;32:1113–19
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Bejjani BP,
    2. Dormont D,
    3. Pidoux B,
    4. et al
    . Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 2000;92:615–25
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Pollo C,
    2. Meuli R,
    3. Maeder P,
    4. et al
    . Subthalamic nucleus deep brain stimulation for Parkinson's disease: magnetic resonance imaging targeting using visible anatomical landmarks. Stereotact Funct Neurosurg 2003;80:76–81
    CrossRefPubMed
  43. 43.↵
    1. Menuel C,
    2. Garnero L,
    3. Bardinet E,
    4. et al
    . Characterization and correction of distortions in stereotactic magnetic resonance imaging for bilateral subthalamic stimulation in Parkinson disease. J Neurosurg 2005;103:256–66
    PubMedWeb of Science
  44. 44.↵
    1. Sumanaweera TS,
    2. Adler JR Jr.,
    3. Napel S,
    4. et al
    . Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery 1994;35:696–703, discussion 703–04
    PubMedWeb of Science
  45. 45.↵
    1. Yu C,
    2. Apuzzo ML,
    3. Zee CS,
    4. et al
    . A phantom study of the geometric accuracy of computed tomographic and magnetic resonance imaging stereotactic localization with the Leksell stereotactic system. Neurosurgery 2001;48:1092–98, discussion 1098–99
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Bonneville F,
    2. Welter ML,
    3. Elie C,
    4. et al
    . Parkinson disease, brain volumes, and subthalamic nucleus stimulation. Neurology 2005;64:1598–604
    Abstract/FREE Full Text
  47. 47.↵
    1. Durston S,
    2. Hulshoff Pol HE,
    3. Casey BJ,
    4. et al
    . Anatomical MRI of the developing human brain: what have we learned? J Am Acad Child Adolesc Psychiatry 2001;40:1012–20
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Giedd JN,
    2. Castellanos FX,
    3. Rajapakse JC,
    4. et al
    . Sexual dimorphism of the developing human brain. Prog Neuropsychopharmacol Biol Psychiatry 1997;21:1185–201
    CrossRefPubMed
  49. 49.↵
    1. den Dunnen WF,
    2. Staal MJ
    . Anatomical alterations of the subthalamic nucleus in relation to age: a postmortem study. Mov Disord 2005;20:893–98
    CrossRefPubMed
  50. 50.↵
    1. McDonald WM,
    2. Husain M,
    3. Doraiswamy PM,
    4. et al
    . A magnetic resonance image study of age-related changes in human putamen nuclei. Neuroreport 1991;2:57–60
    PubMed
  51. 51.↵
    1. Brabec J,
    2. Kraseny J,
    3. Petrovicky P
    . Volumetry of striatum and pallidum in man–anatomy, cytoarchitecture, connections, MRI and aging. Sb Lek 2003;104:13–65
    PubMed
  52. 52.↵
    1. Elolf E,
    2. Bockermann V,
    3. Gringel T,
    4. et al
    . Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. AJNR Am J Neuroradiol 2007;28:1093–94
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 30 (10)
American Journal of Neuroradiology
Vol. 30, Issue 10
1 Nov 2009
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Optimization of Subcortical Cerebral MR Imaging−Atlas Coregistration for Improved Postoperative Electrode Localization in Deep Brain Stimulation
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
T. Schönecker, A. Kupsch, A.A. Kühn, G.-H. Schneider, K.-T. Hoffmann
Automated Optimization of Subcortical Cerebral MR Imaging−Atlas Coregistration for Improved Postoperative Electrode Localization in Deep Brain Stimulation
American Journal of Neuroradiology Nov 2009, 30 (10) 1914-1921; DOI: 10.3174/ajnr.A1741

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Automated Optimization of Subcortical Cerebral MR Imaging−Atlas Coregistration for Improved Postoperative Electrode Localization in Deep Brain Stimulation
T. Schönecker, A. Kupsch, A.A. Kühn, G.-H. Schneider, K.-T. Hoffmann
American Journal of Neuroradiology Nov 2009, 30 (10) 1914-1921; DOI: 10.3174/ajnr.A1741
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Deep brain stimulation effects on cortical activity across frequency bands and contact locations
  • Patient-Specific and Interpretable Deep Brain Stimulation Optimisation Using MRI and Clinical Review Data
  • Deep brain stimulation-induced local evoked potentials outperform spectral features in spatial and clinical STN mapping
  • The impact of localization and registration accuracy on estimates of deep brain stimulation electrode position in stereotactic space
  • Thalamic burst and tonic firing selectively indicate patients consciousness level and recovery
  • Deep brain stimulation and dopamine medication enhance free choice preference in Parkinsons disease
  • Precision Mapping of Thalamic Deep Brain Stimulation Lead Positions Associated with the Microlesion Effect in Tourette Syndrome
  • Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex
  • Increased variance in second electrode accuracy during deep brain stimulation and its relationship to pneumocephalus, brain shift, and clinical outcomes: a retrospective cohort study
  • Structural connectivity of subthalamic nucleus stimulation for improving freezing of gait
  • Neuroanatomical Considerations for Optimizing Thalamic Deep Brain Stimulation in Tourette Syndrome
  • Sweetspot mapping in deep brain stimulation: Strengths and limitations of current approaches
  • Toward a unified connectomic target for deep brain stimulation in obsessive-compulsive disorder
  • Implantation technique, safety and complications of robot-assisted stereoelectroencephalography exploration of the limbic thalamus in human focal epilepsy
  • Modulating the human functional connectome using deep brain stimulation
  • Ictal recruitment of anterior nucleus of thalamus in human focal epilepsy
  • Directional DBS Leads Show Large Deviations from their Intended Implantation Orientation
  • Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging
  • Postoperative MRI localisation of electrodes and clinical efficacy of pallidal deep brain stimulation in cervical dystonia
  • Scaling of Movement Is Related to Pallidal {gamma} Oscillations in Patients with Dystonia
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Evaluating the Effects of White Matter Multiple Sclerosis Lesions on the Volume Estimation of 6 Brain Tissue Segmentation Methods
  • Quiet PROPELLER MRI Techniques Match the Quality of Conventional PROPELLER Brain Imaging Techniques
  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire