Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeurointervention

Endovascular Treatment of Experimental Aneurysms by Use of Biologically Modified Embolic Devices: Coil-mediated Intraaneurysmal Delivery of Fibroblast Tissue Allografts

William F. Marx, Harry J. Cloft, Gregory A. Helm, John G. Short, Huy M. Do, Mary E. Jensen and David F. Kallmes
American Journal of Neuroradiology February 2001, 22 (2) 323-333;
William F. Marx
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Harry J. Cloft
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory A. Helm
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John G. Short
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Huy M. Do
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary E. Jensen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David F. Kallmes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: Our long-term goal is to improve intraaneurysmal fibrosis after aneurysm embolization, by implanting exogenous fibroblasts, using platinum coils. For the current project, we tested two hypotheses: 1) that exogenous, fluorescence-labeled rabbit fibroblast allografts remained viable and proliferated within rabbit carotid arteries, and 2) that these fibroblast allografts could be reliably implanted into experimental aneurysms by use of platinum coils.

METHODS: Part 1. New Zealand White rabbit synovial fibroblasts obtained from a commercial vender were labeled with a fluorescent membrane marker. The common carotid arteries of New Zealand White rabbits were surgically exposed, ligated proximally and distally, and entered with 22-g angiocatheters. Through the angiocatheter we injected either phosphate-buffered saline-containing fluorescence-labeled fibroblasts (treatment vessels) or saline only (control vessels). The wounds were closed, and the subjects were kept alive for various time points up to 2 weeks. After sacrifice, the carotid artery segments were resected, processed for frozen-section histologic examination, and evaluated using epifluorescent microscopy and hematoxylin and eosin staining. Cell viability and proliferation were determined by comparing the treatment versus control vessels.

Part 2. A) Fluorescence-labeled cells were grown in culture on platinum coils, which were then exposed to systemic arterial flow in the rabbit thoracic aorta for various lengths of time up to 40 minutes. The coil segments were then examined using fluorescent microscopy and the presence and relative amount of cells remaining on the coil were documented.

B) Experimental aneurysms in rabbits were embolized with control platinum coils (n = 9) and platinum coils bearing rabbit synovial fibroblasts that were grown onto the coils in culture prior to implantation (n = 9). Subjects were sacrificed 3, 7, and 14 days after coil implantation. Histologic samples were studied to assess the presence or absence of nucleated cells within and around coil winds in order to determine whether fibroblasts had been successfully implanted into aneurysms. Data were evaluated using the chi-square test for statistical significance.

RESULTS: Part 1. Fluorescence-labeled cells were examined in the treatment carotid artery segments and results were recorded at all time intervals. The treatment vessel segments showed evidence of progressive cellular proliferation, leading to complete vessel fibrosis at 2 weeks. Conversely, control vessel segments were filled predominately with unorganized thrombus at each time interval.

Part 2. A) Numerous labeled fibroblasts remained adherent to the coil despite prolonged exposure to systemic arterial flow.

B) Fibroblasts were seen adjacent to or within the central lumen of coils in eight (88%) of nine aneurysms treated with cell-bearing coils. Nucleated cells were not present in any of the nine control coil subjects. This represented a statistically significant difference (P < .001).

CONCLUSION: Fibroblast allografts remain viable and proliferate in the vascular space in rabbits. Furthermore, these same fibroblasts, after seeding onto platinum coils in culture, remain protected within the lumen of the coils and are retained within the coil lumen even after prolonged exposure to arterial blood flow. Coils can be used to deliver viable fibroblasts directly into experimental aneurysms successfully. These findings indicate that coil-mediated cell implantation is feasible and may be a potential method of increasing the biological activity of embolic coils.

  • Copyright © American Society of Neuroradiology
View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology
Vol. 22, Issue 2
1 Feb 2001
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Endovascular Treatment of Experimental Aneurysms by Use of Biologically Modified Embolic Devices: Coil-mediated Intraaneurysmal Delivery of Fibroblast Tissue Allografts
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
William F. Marx, Harry J. Cloft, Gregory A. Helm, John G. Short, Huy M. Do, Mary E. Jensen, David F. Kallmes
Endovascular Treatment of Experimental Aneurysms by Use of Biologically Modified Embolic Devices: Coil-mediated Intraaneurysmal Delivery of Fibroblast Tissue Allografts
American Journal of Neuroradiology Feb 2001, 22 (2) 323-333;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Endovascular Treatment of Experimental Aneurysms by Use of Biologically Modified Embolic Devices: Coil-mediated Intraaneurysmal Delivery of Fibroblast Tissue Allografts
William F. Marx, Harry J. Cloft, Gregory A. Helm, John G. Short, Huy M. Do, Mary E. Jensen, David F. Kallmes
American Journal of Neuroradiology Feb 2001, 22 (2) 323-333;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Part 2
    • Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Autologous adipose-derived mesenchymal stem cells improve healing of coiled experimental saccular aneurysms: an angiographic and histopathological study
  • Mechanisms of Healing in Coiled Intracranial Aneurysms: A Review of the Literature
  • 1-Hexyl n-cyanoacrylate compound (Neucrylate&trade; AN), a new treatment for berry aneurysm. III: Initial clinical results
  • Embolization of intracranial aneurysms with second-generation Matrix-2 detachable coils: mid-term and long-term results
  • Bioactivity and bioinactivity: two sides of the same coin
  • Cerecyte versus Platinum Coils in the Treatment of Intracranial Aneurysms: Packing Attenuation and Clinical and Angiographic Midterm Results
  • Endovascular Histologic Effects of Ultrathin Gold- or Vitronectin-Coated Platinum Aneurysm Coils in a Rodent Arterial Occlusion Model: A Preliminary Investigation
  • Morbidity and Mortality Associated with Creation of Elastase-Induced Saccular Aneurysms in a Rabbit Model
  • Control of Aneurysm Volume by Adjusting the Position of Ligation During Creation of Elastase-Induced Aneurysms: A Prospective Study
  • Brain Aneurysms and Arteriovenous Malformations: Advancements and Emerging Treatments in Endovascular Embolization
  • Endovascular Treatment of Experimental Aneurysms by Use of Fibroblast-Coated Platinum Coils: An Angiographic and Histopathologic Study
  • Polyglycolide/Polylactide-Coated Platinum Coils for Patients With Ruptured and Unruptured Cerebral Aneurysms: A Single-Center Experience
  • Matrix and Bioabsorbable Polymeric Coils Accelerate Healing of Intracranial Aneurysms: Long-Term Experimental Study
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Rescue Reentry in Carotid Near-Occlusion
  • Contour Neurovascular System: Five Year Follow Up
  • Effect of SARS-CoV2 on Endovascular Thrombectomy
Show more Neurointervention

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire