Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Abstract

In vivo MR evaluation of age-related increases in brain iron.

G Bartzokis, J Mintz, D Sultzer, P Marx, J S Herzberg, C K Phelan and S R Marder
American Journal of Neuroradiology June 1994, 15 (6) 1129-1138;
G Bartzokis
Research Service, West Los Angeles VA Medical Center, CA 90073.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Mintz
Research Service, West Los Angeles VA Medical Center, CA 90073.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Sultzer
Research Service, West Los Angeles VA Medical Center, CA 90073.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Marx
Research Service, West Los Angeles VA Medical Center, CA 90073.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J S Herzberg
Research Service, West Los Angeles VA Medical Center, CA 90073.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C K Phelan
Research Service, West Los Angeles VA Medical Center, CA 90073.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S R Marder
Research Service, West Los Angeles VA Medical Center, CA 90073.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • Responses
  • PDF
Loading

Abstract

PURPOSE To assess the validity of an MR method of evaluating tissue iron.

METHODS The difference between the transverse relaxation rate (R2) measured with a high-field MR instrument and the R2 measured with a lower field instrument defines a measure termed the field-dependent R2 increase (FDRI). Previous in vivo and in vitro studies indicated that FDRI is a specific measure of tissue iron stores (ferritin). T2 relaxation times were obtained using two clinical MR instruments operating at 0.5 T and 1.5 T. T2 relaxation times were measured in the frontal white matter, caudate nucleus, putamen, and globus pallidus of 20 healthy adult male volunteers with an age range of 20 to 81 years. R2 was calculated as the reciprocal of T2 relaxation time. These in vivo MR results were correlated with previously published postmortem data on age-related increases of nonheme iron levels.

RESULTS The FDRI was very highly correlated with published brain iron levels for the four regions examined. In the age range examined, robust and highly significant age-related increases in FDRI were observed in the caudate and putamen. The correlations of age and FDRI in the globus pallidus and white matter were significantly lower and did not have statistical significance.

CONCLUSIONS The data provide additional evidence that FDRI is a specific measure of tissue iron stores. The data also show that age-related increases in tissue iron stores can be quantified in vivo despite significant age-related processes that oppose the increase in R2 caused by iron. These results are relevant to the investigation of neurodegenerative processes in which iron may catalyze toxic free-radical reactions.

  • Copyright © American Society of Neuroradiology
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology
Vol. 15, Issue 6
1 Jun 1994
  • Table of Contents
  • Index by author
Advertisement
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
In vivo MR evaluation of age-related increases in brain iron.
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
G Bartzokis, J Mintz, D Sultzer, P Marx, J S Herzberg, C K Phelan, S R Marder
In vivo MR evaluation of age-related increases in brain iron.
American Journal of Neuroradiology Jun 1994, 15 (6) 1129-1138;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
In vivo MR evaluation of age-related increases in brain iron.
G Bartzokis, J Mintz, D Sultzer, P Marx, J S Herzberg, C K Phelan, S R Marder
American Journal of Neuroradiology Jun 1994, 15 (6) 1129-1138;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • Responses
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Aging is associated with increased brain iron through brain-derived hepcidin expression
  • Predicting age from cortical structure across the lifespan
  • Transition into Driven Equilibrium of the Balanced Steady-State Free Precession as an Ultrafast Multisection T2-Weighted Imaging of the Brain
  • Different Iron-Deposition Patterns of Multiple System Atrophy with Predominant Parkinsonism and Idiopathetic Parkinson Diseases Demonstrated by Phase-Corrected Susceptibility-Weighted Imaging
  • Labeling of Cerebral Amyloid {beta} Deposits In Vivo Using Intranasal Basic Fibroblast Growth Factor and Serum Amyloid P Component in Mice
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire