Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging
Open Access

MR Imaging Assessment of Tumor Perfusion and 3D Segmented Volume at Baseline, during Treatment, and at Tumor Progression in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma

J. Sedlacik, A. Winchell, M. Kocak, R.B. Loeffler, A. Broniscer and C.M. Hillenbrand
American Journal of Neuroradiology February 2013, DOI: https://doi.org/10.3174/ajnr.A3421
J. Sedlacik
From the Departments of Radiological Sciences (J.S., A.W., R.B.L., C.M.H.), Biostatistics (M.K.), and Oncology (A.B.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Preventive Medicine (M.K.), University of Tennessee Health Science Center, Memphis, Tennessee.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Winchell
From the Departments of Radiological Sciences (J.S., A.W., R.B.L., C.M.H.), Biostatistics (M.K.), and Oncology (A.B.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Preventive Medicine (M.K.), University of Tennessee Health Science Center, Memphis, Tennessee.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Kocak
From the Departments of Radiological Sciences (J.S., A.W., R.B.L., C.M.H.), Biostatistics (M.K.), and Oncology (A.B.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Preventive Medicine (M.K.), University of Tennessee Health Science Center, Memphis, Tennessee.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.B. Loeffler
From the Departments of Radiological Sciences (J.S., A.W., R.B.L., C.M.H.), Biostatistics (M.K.), and Oncology (A.B.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Preventive Medicine (M.K.), University of Tennessee Health Science Center, Memphis, Tennessee.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Broniscer
From the Departments of Radiological Sciences (J.S., A.W., R.B.L., C.M.H.), Biostatistics (M.K.), and Oncology (A.B.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Preventive Medicine (M.K.), University of Tennessee Health Science Center, Memphis, Tennessee.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.M. Hillenbrand
From the Departments of Radiological Sciences (J.S., A.W., R.B.L., C.M.H.), Biostatistics (M.K.), and Oncology (A.B.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Preventive Medicine (M.K.), University of Tennessee Health Science Center, Memphis, Tennessee.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Supplemental
  • Info & Metrics
  • Responses
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: DIPG is among the most devastating brain tumors in children, necessitating the development of novel treatment strategies and advanced imaging markers such as perfusion to adequately monitor clinical trials. This study investigated tumor perfusion and 3D segmented tumor volume as predictive markers for outcome in children with newly diagnosed DIPG.

METHODS: Imaging data were assessed at baseline, during, and after RT, and every other month thereafter until tumor progression for 35 patients (ages 2–16 years) with newly diagnosed DIPG enrolled in the phase I clinical study, NCT00472017. Patients were treated with conformal RT and vandetanib, a vascular endothelial growth factor receptor 2 inhibitor.

RESULTS: Tumor perfusion increased and tumor volume decreased during combined RT and vandetanib therapy. These changes slowly diminished in follow-up scans until tumor progression. However, increased tumor perfusion and decreased tumor volume during combined therapy were associated with longer PFS. Apart from a longer OS for patients who showed elevated tumor perfusion after RT, there was no association for tumor volume and other perfusion variables with OS.

CONCLUSIONS: Our results suggest that tumor perfusion may be a useful predictive marker for the assessment of treatment response and tumor progression in children with DIPG treated with both RT and vandetanib. The assessment of tumor perfusion yields valuable information about tumor microvascular status and its response to therapy, which may help better understand the biology of DIPGs and monitor novel treatment strategies in future clinical trials.

Abbreviations

DIPG
diffuse intrinsic pontine glioma
DSC
dynamic susceptibility contrast
etCO2
end-tidal carbon dioxide
OS
overall survival
PFS
progression-free survival
RT
radiation therapy
  • © 2013 American Society of Neuroradiology

Indicates open access to non-subscribers at www.ajnr.org

Next
Back to top
Advertisement
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR Imaging Assessment of Tumor Perfusion and 3D Segmented Volume at Baseline, during Treatment, and at Tumor Progression in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J. Sedlacik, A. Winchell, M. Kocak, R.B. Loeffler, A. Broniscer, C.M. Hillenbrand
MR Imaging Assessment of Tumor Perfusion and 3D Segmented Volume at Baseline, during Treatment, and at Tumor Progression in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma
American Journal of Neuroradiology Feb 2013, DOI: 10.3174/ajnr.A3421

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MR Imaging Assessment of Tumor Perfusion and 3D Segmented Volume at Baseline, during Treatment, and at Tumor Progression in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma
J. Sedlacik, A. Winchell, M. Kocak, R.B. Loeffler, A. Broniscer, C.M. Hillenbrand
American Journal of Neuroradiology Feb 2013, DOI: 10.3174/ajnr.A3421
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
  • Supplemental
  • Info & Metrics
  • Responses
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Advanced ADC Histogram, Perfusion, and Permeability Metrics Show an Association with Survival and Pseudoprogression in Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium
  • Measurable Supratentorial White Matter Volume Changes in Patients with Diffuse Intrinsic Pontine Glioma Treated with an Anti-Vascular Endothelial Growth Factor Agent, Steroids, and Radiation
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Frontal Paraventricular Cysts
  • Sodium MRI in Pediatric Brain Tumors
  • FRACTURE MR in Congenital Vertebral Anomalies
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire