Summary of top 3 performing models in the external data set for each feature set
Feature Set | Processing | Algorithm | Feature Selection | mAUC | LogLoss | Brier Score |
---|---|---|---|---|---|---|
CE_ET and F_PTR | SD/none | SVM-P | ICC | 0.833 | 0.871 | 0.521 |
SD/ComBat | GBRM | LinearComb | 0.832 | 0.860 | 0.507 | |
SD/none | SVM-RBF | Corr | 0.831 | 0.835 | 0.519 | |
CE_ET and T2_PTR | None/ComBat | ENET | None | 0.841 | 0.922 | 0.492 |
None/ComBat | SVM-P | LASSO | 0.840 | 0.896 | 0.505 | |
None/ComBat | SVM-P | linearComb | 0.839 | 0.915 | 0.509 | |
CE, ET, A, ET and F, PTR | SD/none | SVM-P | ICC | 0.886 | 0.712 | 0.414 |
SD/none | SVM-P | PCA | 0.874 | 0.699 | 0.398 | |
None/none | SVM-P | ICC | 0.873 | 0.764 | 0.433 | |
CE_ET | SD/none | SVM-P | ICC | 0.859 | 0.789 | 0.472 |
SD/none | SVM-P | None | 0.856 | 0.800 | 0.499 | |
SD/none | SVM-P | LASSO | 0.856 | 0.786 | 0.494 |
Note:—ENET indicates multinomial elastic net; GBRM, generalized boosted regression mode; LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis; SVM-P, support vector machine-polynomial kernel; SVM-RBF, support vector machine-Gaussian kernel; LinearComb, Linear combination filter; A, ADC; F, FLAIR; Corr, Correlation filter.