Table 2:

Summary of top 3 performing models in the external data set for each feature set

Feature SetProcessingAlgorithmFeature SelectionmAUCLogLossBrier Score
CE_ET and F_PTRSD/noneSVM-PICC0.8330.8710.521
SD/ComBatGBRMLinearComb0.8320.8600.507
SD/noneSVM-RBFCorr0.8310.8350.519
CE_ET and T2_PTRNone/ComBatENETNone0.8410.9220.492
None/ComBatSVM-PLASSO0.8400.8960.505
None/ComBatSVM-PlinearComb0.8390.9150.509
CE, ET, A, ET and F, PTRSD/noneSVM-PICC0.8860.7120.414
SD/noneSVM-PPCA0.8740.6990.398
None/noneSVM-PICC0.8730.7640.433
CE_ETSD/noneSVM-PICC0.8590.7890.472
SD/noneSVM-PNone0.8560.8000.499
SD/noneSVM-PLASSO0.8560.7860.494
  • Note:—ENET indicates multinomial elastic net; GBRM, generalized boosted regression mode; LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis; SVM-P, support vector machine-polynomial kernel; SVM-RBF, support vector machine-Gaussian kernel; LinearComb, Linear combination filter; A, ADC; F, FLAIR; Corr, Correlation filter.