Online Table 1: Univariable analysis of predictors for incomplete occlusion $(n = 105)^a$ | meomplete occusion (n = 105) | | | |------------------------------|---------|--| | Parameter | P Value | | | Age (≥ 60 years) | .002 | | | Sex | .93 | | | Nonsmoker | .38 | | | Fusiform | .012 | | | Branching artery from dome | <.001 | | | Complications | .42 | | | Maximum dome diameter | .18 | | | Neck diameter | .33 | | | Height | .21 | | | Dome/neck ratio | .91 | | | ASPECTS ratio | .21 | | | Adjunctive coil | .48 | | | Saccular aneurysm type | <.001 | | ^a Statistically significant predictors were age older than 60 years, fusiform aneurysm, branching artery from the dome, and saccular aneurysm type. Online Table 2: Number of occlusions by aneurysm type (n = 105) | | · · · · · · · | | |------------------------------|--------------------|----------------------| | | Complete Occlusion | Incomplete Occlusion | | Outer convexity ($n = 35$) | 15 | 20 | | Inner convexity ($n = 29$) | 28 | 1 | | Lateral wall ($n = 34$) | 30 | 4 | | Fusiform $(n = 7)$ | 1 | 6 | Online Table 3: Prior reports on predictors of complete/incomplete occlusion treated by using the Pipeline Embolization Device | Factors | Authors | Pertinent Negative | |---|--|--| | Demographic factors | | | | Incomplete occlusion | | | | Age ≥ 70 years, nonsmoker, short | Adeeb et al, 2017 ¹⁰ | PcomA aneurysm, posterior circulation, | | follow-up period | | maximum diameter of 21 mm | | Short follow-up period | Jabbour et al, 2013 ¹⁶ | Age, sex, aneurysm location, aneurysm size, aneurysm morphology, previous aneurysm treatment, No. of PEDs used per aneurysm, adjunctive coils, balloon angioplasty, early-vs-late groups, procedural complications, angiographic follow-up time | | Female | O'Kelly et al, 2013 ¹⁵ | PED No., age, coil use, posterior circulation,
maximum diameter, neck diameter,
associated thrombus | | Complete occlusion | | | | On-label PED use | Madaelil et al, 2019 ¹² | | | Left side, hypertension, smoking, without family history | Liang et al, 2019 ¹³ | | | Morphologic or procedural factors | | | | Incomplete occlusion | | | | Fusiform, decreased dome/neck ratio, pre-existing laser-cut stent | Shapiro et al, 2017 ¹¹ | Aneurysm fundus size, neck diameter, multiple PEDs | | Large/giant distal ICA aneurysm | Brasiliense et al, 2017 ²¹ | | | Aneurysm previously treated | O'Kelly et al, 2013 ¹⁵ | | | Fusiform | Jabbour et al, 2013 ¹⁶ | Age, sex, aneurysm location, aneurysm size, aneurysm morphology, previous aneurysm treatment, number of PEDs used per aneurysm, adjunctive coils, balloon angioplasty, early-vs-late groups, procedural complications, angiographic follow-up time | | Decreasing ASPECTS ratio, increasing neck diameter | Li et al, 2019 ¹⁷ | | | Aneurysm with branching artery arising from dome | Puffer et al, 2012, ²² Raz et al, 2015, ²³ Vedantam et al, 2015, ²⁴ Moshayedi et al, 2017, ²⁵ Volker et al, 2018 ²⁶ | Neck diameter, aneurysm size, prior coil embolization, type (fusiform, saccular, dissection) | | Complete occlusion | 13 | | | Adjunctive coil, multiple devices | Madaelil et al, 2019 ¹² | | | Small, proximal ICA | Brasiliense et al, 2017 ²¹ | | **Note:**—PcomA indicates posterior communicating artery.