
On-line Table: Clinical, EEG, and imaging findings

No.
Age (yr)/

Sex
Epilepsy

Syndrome
Structural

MRI Semiology

Phase I (Ictal
Video Telemetry,

Surface EEG)
Phase II (Invasive
EEG/PET/SPECT) Op/Pathology

Outcome
Engel
Class

1 49/M MTLE R HS R Vocalizations, head
turning to R, bimanual
automatisms

Surface � foramen ovale
electrodes: seizure
onsets R
mesiotemporal

sAHE R 03/07 I

2 31/F MTLE R HS R Head version to L, figure
4 sign with L tonic
posturing

EEG consistent with
R mesiotemporal
seizure onsets

sAHE R 01/09 I

3 53/F MTLE R HS R Epigastric aura,
vocalizations,
oromandibular
automatisms, head
turning to R, postictal
cuffing

EEG consistent with
R mesiotemporal
seizure onsets

sAHE R 04/08 I

4 48/M MTLE R HS R Epigastric aura,
oromandibular
automatisms, SG

EEG consistent with
R mesiotemporal
seizure onsets

5 30/M MTLE R Hippocampal
atrophy R

Epigastric aura, head
turning to L, tonic
posturing L, R manual
automatism, SG

Surface � foramen ovale
electrodes: seizure
onsets R
mesiotemporal

sAHE R 08/07 I

PET: hypometabolism
temporomesial and
temporopolar R,
mesiotemporal L and
insular region L

Ictal SPECT: L temporal
hyperperfusion

6 31/F MTLE L HS L Epigastric aura, head
turning to R, bimanual
and perioral
automatisms

Surface � foramen
ovale: seizure onsets
L mesiotemporal

Scheduled

7 68/F MTLE R HS R Nausea, oromandibular
automatisms

EEG consistent with
R mesiotemporal
seizure onsets

sAHE R 03/08 II

8 25/F MTLE R N From sleep, screaming,
head turning to L,
bimanual automatisms,
verbalizations, SG

EEG with strip and depth
electrodes: seizure
onset in the R
amygdale

Amygadalectomy and
resection tmp R
9/09

IV

9 54/F MTLE R HS R Strange feeling,
oromandibular
automatisms and
bilateral arm
automatisms

Surface � foramen ovale
electrodes: seizure
onset R mesiotemporal

sAHE R 12/09 I

10 36/F MTLE R HS R Behavioral arrest, manual
automatisms R,
dystonic posturing
L arm

EEG consistent with
R mesiotemporal
seizure onset

Scheduled

11 27/M LTLE L N Arrest reaction, speech
arrest, tonic posturing,
oral automatisms, SG

EEG with strip and depth
electrodes: L
temporolateralpolar
seizure onset

Lesionectomy tmp
L/DCM, 11/08

I

12 48/F FLE R DCM R
frontal

Elevation of both arms,
head turning to R,
arrest reaction,
dystonic posturing
L hand

EEG with strip and depth
electrodes: R frontal
seizure onset in the
vicinity of the lesion

Lesionectomy frontal
R/DCM 08/09

I

13 27/M PLE L DCM L
parietal

Aura with nervousness,
tonic-clonic R arm

EEG with grid electrodes:
L parietal seizure
onset in the vicinity of
the lesion

14 56/F LTLE R N Behavioral arrest, head
version to the R

EEG with strip and depth
electrodes: R
temporolateral seizure
onset

Scheduled

15 20/F LTLE L HS L Behavioral arrest, head
turning to the L,
yawing, manual
automatisms L

EEG with strip and depth
electrodes:
temporopolar to
temporolaterobasal L

Anterior temporal
lobectomy 1/2010/
DCM/HS

I

16 38/F LTLE L DCM L T Behavioral arrest,
blinking, head turning
to the R, SG

EEG with strip and depth
electrodes: seizure
onset temporo-
posterior basal L

Lesionectomy
temporal
L 8/2010

I

Note:—R indicates right; L, left; Op, operation; DCM, malformation of cortical development; N, normal; tmp, temporopolar; HS, hippocampal sclerosis; sAHE, selective amygdalo-
hippocampectomy; PLE, parietal lobe epilepsy; FLE, frontal lobe epilepsy; SG, secondarily generalized seizure.
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On-Line Appendix
This supplemental material is based on the procedures pub-
lished by Jann et al.1

EEG Setup and Recording
Ninety-two MR imaging– compatible silver chloride EEG
electrodes fixed on an elastic cap were placed on the patient’s
scalp according to the international 10 –10 system. Electrodes
were connected to 3 BrainAmp MR imaging– compatible am-
plifiers (Brain Products, Gilching, Germany). EEG was re-
corded at a sampling rate of 5 kHz and bandpass-filtered (0.1–
250 Hz) (input range, 16. 3 mV; recording reference, Fz). Two
consecutive EEG sets were recorded, the first outside (10 min-
utes) and the second inside the MR imaging scanner during
simultaneous fMRI acquisition (16 minutes). During the
scans, patients were positioned in a regular 4-channel head
coil with special foam that minimized head motion and dis-
comfort due to electrodes and ear plugs

MR Imaging Setup and Data Acquisition
MR imaging was performed with a 3T Magnetom Trio TIM
system (Siemens). High-resolution T1-weighted datasets were
recorded for anatomic coregistration (magnetization-pre-
pared rapid acquisition of gradient echo: 176 sagittal sections,
isovoxel resolution � 1.0 mm, FOV � 256 mm � 256 mm,
matrix size � 256 � 256, TR/TE � 1950/2.6 ms). fMRI was
performed with a multisection single-shot T2*-weighted
echo-planar imaging sequence (32 sections, section thick-
ness � 3 mm, gap thickness � 0.75 mm, flip angle � 90°,
FOV � 192 � 192 mm, matrix size � 64 � 64, TR/TE �
4130/30 ms) for patients 1–5 and 11. Since June 2008, an op-
timized continuous fMRI protocol was used with the opti-
mized sequence parameters: TR/TE � 1980/30 ms, matrix �
size 64 � 64 mm, FOV � 92 � 192 mm, flip angle � 90°) with
a total of 460 volumes (patients 6 –10 and 12–16).

MR Imaging Preprocessing
Analysis of the MR imaging data was performed by using
BrainVoyagerQX 1.10.2. (Brain Innovation, Maastricht, the
Netherlands). Preprocessing included the section-scan correc-
tion, removal of low-frequency drifts, 3D motion detection
and correction, and spatial smoothing with a Gaussian kernel
of 6-mm FWHM. Coregistration of the 2D functional to the
3D structural images was performed by using the section po-

sition parameters of the T2*-weighted measurements and the
T1-weighted anatomic measurements of the scanner.

EEG Preprocessing
EEGs recorded during the MR imaging sessions were postpro-
cessed by using Vision Analyzer software (Version 1.05, Brain
Products). Scan pulse artifacts correction was performed with
average artifacts subtraction,2-4 followed by bandpass-filtering
(1–30 Hz) to remove the remaining high-frequency artifacts
and down-sampling to 500 Hz.

ICA-Based EEG Predictor for fMRI Data
The EEGs recorded outside and inside the MR imaging scan-
ner were concatenated and decomposed into ICs, applying an
extended infomax independent component analysis algo-
rithm.5 The resulting ICs were visually inspected by 2 experi-
enced electroencephalographers/neurophysiologists (R.W.,
M.H.), taking into account their temporal dynamics (ie, epi-
leptiform activity in the ICs was identified at the correspond-
ing time points and scalp distributions, as IEDs, in the original
EEG and their specific scalp map [weighting of IC-factor onto
the single electrodes]). 6 The most representative IC was then
selected by consent and convolved with a standard double-�
hemodynamic response function (hemodynamic response
function � �1 / max(�1) � dip � �2 / max(�2), scaled so that
its total integral is zero (positive peak/FWHM, 5.4/5.2 sec-
onds; negative peak/FWHM, 10.8/7.35 seconds; coefficient of
the negative dip, 0.35). The representative IC factor was used
as a predictor for the fMRI BOLD signal in the correlation
estimation.
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